Package Manager Specification

Stephen P. Bennett Christian Faulhammer
spb@exherbo.org fauli @gentoo.org
Ciaran McCreesh Ulrich Miiller
ciaran.mccreesh @ googlemail.com ulm @ gentoo.org

21st June 2025

mailto:spb@exherbo.org
mailto:fauli@gentoo.org
mailto:ciaran.mccreesh@googlemail.com
mailto:ulm@gentoo.org

© 2007-2025 Stephen Bennett, Ciaran McCreesh and others. Contributions are owned by their respective
authors, and may have been changed substantially before inclusion.

This work is released under the Creative Commons Attribution-ShareAlike 4.0 International licence. To view a
copy of this licence, visit https://creativecommons.org/licenses/by-sa/4.0/.

This version corresponds to commit e4269e8 on branch eapi-9.

https://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Introduction

1.1 Aims and motivationo e e e e
1.2 Rationale e e e
1.3 Reporting iSsues o v vt e e e
1.4 Conventions v v i it i e e
1.5 Acknowledgements e e
2 EAPIs
2.1 Definition e
22 Defined EAPIs e
23 ReservedEAPIs
3 Names and versions
3.1 Restrictions Upon NAMES v it e e e e e e e e e e e e
311 Category NAmes e e e e e e e e e e
3.1.2 Packagenames
3.1.3 Slotnames e e e e
3.14 USEflagnames e
3.1.5 Repositorynameso e e e e e
3.1.6 Eclassnames e
3.1.7 License names u e e e e e e e
3.1.8 Keywordnames
3.1.9 EAPInames
3.2 Version specifications e e
3.3 VerSion CompariSOn v v v v v e e e e e e e e e e e e e e e e
3.4 Uniquenessof versions L e

4 Tree layout

4.1 Toplevel. e
4.2 Category directories e
4.3 Packagedirectories e
44 Theprofilesdirectory e
4.4.1 Theprofilesdescfile
4.4.2 The thirdpartymirrorsfile
443 usedescandrelatedfiles oL
444 Theupdatesdirectory
4.5 Thelicensesdirectory
4.6 Theeclassdirectory o i i i e e e e e e
477 Themetadatadirectory i
47.1 Themetadatacache,
5 Profiles
5.1 General principles e e
5.2 Filesthatmakeupaprofile oL
5.2.1 Theparentfile

11
11
11
11
12
12

13
13
13
13

14
14
14
14
14
14
14
14
15
15
15
15
15
15

18
18
18
19
19
20
20
21
21
21
21
22
22

CONTENTS

522 Theeapifile.
5.23 deprecated
524 makedefaults
5.2.5 Simpleline-based files oL
5.2.6 packages e
5.2.7 packages.build
5.2.8 packagemask
5.2.9 packageprovided L
5.2.10 package.useo .. e e e e e
5.2.11 use.stable and package.use.stable
5.2.12 USE masking and forcing
Profile variables
5.3.1 Incremental variables oo
5.3.2 Specific variables and their meanings
Ebuild file format
Ebuild-defined variables
Metadata invariance Lo
Mandatory ebuild-defined variables 0L
Optional ebuild-defined variables
7.3.1 EAPL . . .o
732 SRC_URI. e
733 Keywordso
7.3.4 USEstate constraintso
7.3.5 Properties oL
7.3.6 Restrict e
7377 RDEPENDvalue
7.4 Magic ebuild-defined variables L oL o
Dependencies
Dependency classes
Dependency specification format L.
8.2.1 All-of dependency specifications
8.2.2 USE-conditional dependency specifications
8.2.3 Any-of dependency specifications
8.2.4 Exactly-one-of dependency specifications
8.2.5 At-most-one-of dependency specifications
Package dependency specificationso
8.3.1 Operators e
8.3.2 Blockoperator
8.3.3 Slotdependencies.
8.3.4 2-style and 4-style USE dependencies
Ebuild-defined functions
Listof functions e
9.1.1 Initial working directories L.
9.1.2 pkg pretend.
9.1.3 pkg setupo
9.1.4 src_unpack e
9.1.5 SIC_PIEPAre v o v v e e e e e e e e e e e e
9.1.6 src_configure e
9.1.7 src_compile
0.1.8 Src_test e e
9.1.9 src_install e
9.1.10 pkg preinst e e e e e
9.1.11 pkg postinSt

23
24
24
24
24
25
25
25
25
25
26
26
28
28

30

31
31
31
31
32
33
33
34
34
34
34
35

36
36
37
38
38
38
38
39
39
39
40
40
40

CONTENTS 5

9.1.12 pkg prerm 47
9.1.13 pkg postrm 47
9.1.14 pkg_config e 47
9.1.15 pkg_info e 47
9.1.16 pkg nofetch. 48
9.1.17 Default phase functions 48

9.2 Callorder e e e e 48
10 Eclasses 50
10.1 Theinheritcommand e 50
10.2 Eclass-defined metadatakeys oL 50
10.3 EXPORT_FUNCTIONS e e 50
11 The ebuild environment 52
11.1 Defined variables 52
11.1.1 USEandIUSEhandling 57
11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION 58
11.1.3 Offset-prefix variables 58
11.1.4 Path variables and trailingslash 59

11.2 The state of variables between functions 59
11.3 The state of the system between functions 59
12 Available commands 61
12.1 Systemcommands L. 61
12.1.1 Guaranteed systemcommands 61

12.2 Commands provided by package dependencies 61
12.3 Ebuild-specificcommands oL o 62
12.3.1 Failure behaviour and related commands 62
1232 Bannedcommands 62
12.3.3 Sandbox commands 62
12.3.4 Package manager query commands 63
12.3.5 Outputcommands e 63
12.3.6 Errorcommands e e 64
12.3.7 Patchcommands 65
123.8 Buildcommands L 65
12.3.9 Installationcommands 68
12.3.10 Commands affecting install destinations 71
12.3.11 Commands controlling manipulation of files in the stagingarea 72
12.3.12USE List functions i v i e e 73
12313 Textlist functions e 75
12.3.14 Version manipulation and comparison commands 75
123.15Misccommands 76
123.16 Debugcommands oL 79
12.3.17 Reserved commands and variables 79

13 Merging and unmerging 80
13.1 Overview e e e e e e e e e e 80
132 Directories v v i i e e e e e e e e e e e e e 80
13.2.1 Permissions e 80
13.2.2 Empty directories o v i e e e e 80

13.3 Regularfiles e 80
13.3.1 Permissions e e e e e e e e e e e 81
13.3.2 File modificationtimes 81
13.3.3 Configuration file protection 81

13.4 Symlinks 82
13.4.1 Rewriting e e 82

13.5 Hardlinks e e e 82

CONTENTS

13.6 Otherfiles e

14 Metadata cache

14.1 Directory CONtents v vt e e e e e e e e e e
14.2 Legacy cache fileformat
14.3 md5S-dict cache file format oo oo

Glossary

Bibliography

A

B

metadata.xml
Unspecified items

Historical curiosities
C.1 Long-obsolete features
C.2 Retroactivechanges e

Feature availability by EAPI
Differences between EAPIs

Desk reference

83
83
83
84

85

86

87

88

89
89
89

91

93

97

Algorithms

3.1
32
33
34
35
3.6
3.7
5.1
12.1
12.2
12.3
12.4

Version comparison top-level logic 16
Version comparison logic for numeric components 16
Version comparison logic for each numeric component after the first 16
Version comparison logic for letter components 16
Version comparison logic for suffixes 0000 17
Version comparison logic foreach suffix, 17
Version comparison logic for revision components 17
USEmasking logic L 27
eapplylogic 65
econf --libdirlogic. 67
einstalldocslogic 78
Library directory logic 78

Listings

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10.1
11.1
12.1
12.2
C.1

STC_UNPACK vttt e e e e e e 43
src_prepare,format6. 44
src_prepare,format8. 44
src_configure 45
src_compile,formatO. L 45
src_compile,format 1. 45
src_compile,format2. 45
src_install,format4d. e 46
src_install,format6. 47
EXPORT_FUNCTIONS example: foo.eclass 51
Environment state between functions oL oL 60
einstallcommand 68
Create a relative path fordosym -r 70
If-elseuseblocks 89

Tables

4.1
4.2

5.1
52
53
54
55
5.6
5.7

6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10

10.1

11.1
11.2
11.3
11.4

EAPIs supporting a directory for package.mask 20
Naming rules for files in updates directory for EAPIs 21
Default EAPI for profiles 24
EAPIs supporting directories for profile files 24
EAPIs supporting package.providedinprofiles 25
EAPIs supporting use . stable and package.use.stableinprofiles 26
Profile directory support for masking/forcing use flags in stable versionsonly 26
Profile-defined IUSE injection for EAPIs 28
Profile-defined unsetting of variablesin EAPIs 28
Bash version and options 30
EAPIs supporting TUSE defaults 32
EAPIs supporting various ebuild-defined variables 32
EAPIs supporting SRC_URI arrows and selective URI restrictions 33
EAPIs with RDEPEND=DEPEND default 35
EAPIs supporting DEFINED_PHASES 35
Dependency classes required to be satisfied for a particular phase function 36
Summary of other interfaces related to dependency classes 37
Prefix values for DEPEND 37
EAPIs supporting additional dependency types 37
EAPIs supporting REQUIRED_USE 77 Zroups « « « v v v v v v v 38
Matching of empty dependency groupsin EAPIs 38
Support for SLOT dependencies and sub-slotsin EAPIs 39
EAPIs supporting USE dependencies 39
Exclamation mark strengths for EAPIs 40
Initial working directory in pkg_x phase functions for EAPIs 43
EAPIs with S to WORKDIR fallbacks 43
EAPIs supporting pkg_pretend 43
src_prepare support and behaviour for EAPIs L. 44
EAPIs supporting src_configure 44
src_compile behaviour for EAPIs o oL, 45
src_test behaviourforEAPIso 46
src_install behaviourfor EAPIs 0oL 46
EAPIs supporting pkg_info on non-installed packages 48
EAPIs supporting default_ phase functions 48
EAPIs accumulating PROPERTIES and RESTRICT across eclasses 51
EAPIs with variables exported to the environment 52
Defined variables 53
EAPIs supporting various added env variables 57
EAPIs supporting various removed env variables 57

TABLES

11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24
12.25
12.26

13.1
13.2

D.1

10
EAPIs supporting offset-prefix env variables 57
Locale settings for EAPIs 58
EAPIs supporting offset-prefix 59
Variables that always or never end with a trailingslash 59
System commands for EAPIs 61
EAPI command failure behaviour 0 0L, 62
Bannedcommands Lo 63
Package manager query command options supported by EAPIs 63
Output commands for EAPIs 64
Properties of die command in EAPIs 64
EAPIs supporting pipestatus oo 64
Patchcommands for EAPIs 66
Extra econf arguments for EAPIs 0oL, 67
EAPIs supporting dodoc -r 71
EAPIs supporting doheader and newheader 71
EAPIs supporting symlinks fordoins 0oL 71
doman language support options for EAPIs 71
EAPIs supporting stdin for newx commands 71
domo destination pathin EAPIs o oL 72
EAPIs supporting dosym -T oot 72
Commands respecting insoptsfor EAPIs 72
Commands respecting exeoptsfor EAPIs 72
Commands controlling manipulation of files in the staging areain EAPIs 73
EAPI behaviour for use queries not in IUSE_EFFECTIVE 74
usev, use_with and use_enable arguments for EAPIs 74
EAPIs supportingusexand in_iuse 74
EAPIs supporting version manipulation commands 76
unpack behaviour for EAPIs Lo oo 77
unpack extensions for EAPIs o . 77
Misc commands for EAPIs 79
Preservation of file modification times (mtimes) 81
Rewriting of absolute symlinks in EAPIs 82

Featuresin EAPIs 91

Chapter 1

Introduction

1.1 Aims and motivation

This document aims to fully describe the format of an ebuild repository and the ebuilds therein, as
well as certain aspects of package manager behaviour required to support such a repository.

This document is not designed to be an introduction to ebuild development. Prior knowledge of
ebuild creation and an understanding of how the package management system works is assumed;
certain less familiar terms are explained in the Glossary.

This document does not specify any user or package manager configuration information.

1.2 Rationale

At present the only definition of what an ebuild can assume about its environment, and the only
definition of what is valid in an ebuild, is the source code of the latest Portage release and a general
consensus about which features are too new to assume availability. This has several drawbacks: not
only is it impossible to change any aspect of Portage behaviour without verifying that nothing in
the tree relies upon it, but if a new package manager should appear it becomes impossible to fully
support such an ill-defined standard.

This document aims to address both of these concerns by defining almost all aspects of what an ebuild
repository looks like, and how an ebuild is allowed to behave. Thus, both Portage and other package
managers can change aspects of their behaviour not defined here without worry of incompatibilities
with any particular repository.

1.3 Reporting issues

Issues (inaccuracies, wording problems, omissions etc.) in this document should be reported via Gen-
too Bugzilla using product Gentoo Hosted Projects, component PMS/EAPI and the default assignee.
There should be one bug per issue, and one issue per bug.

Patches (in git format-patch form if possible) may be submitted either via Bugzilla or to the
gentoo-pms@lists.gentoo.org mailing list. Patches will be reviewed by the PMS team, who
will do one of the following:

e Accept and apply the patch.

» Explain why the patch cannot be applied as-is. The patch may then be updated and resubmitted
if appropriate.

* Reject the patch outright.

* Take special action merited by the individual circumstances.

11

mailto:gentoo-pms@lists.gentoo.org

CHAPTER 1. INTRODUCTION 12

When reporting issues, remember that this document is not the appropriate place for pushing through
changes to the tree or the package manager, except where those changes are bugs.

If any issue cannot be resolved by the PMS team, it may be escalated to the Gentoo Council.

1.4 Conventions

Text in teletype is used for filenames or variable names. [talic text is used for terms with a partic-
ular technical meaning in places where there may otherwise be ambiguity.

The term package manager is used throughout this document in a broad sense. Although some
parts of this document are only relevant to fully featured package managers, many items are equally
applicable to tools or other applications that interact with ebuilds or ebuild repositories.

1.5 Acknowledgements

Thanks to Mike Kelly (package manager provided utilities, section 12.3), Danny van Dyk (ebuild
functions, chapter 9), David Leverton (various sections), Petteri Réty (environment state, sec-
tion 11.2), Michat Gérny (various sections), Andreas K. Hiittel (stable use masking, section 5.2.12),
Zac Medico (sub-slots, section 7.2) and James Le Cuirot (build dependencies, section 11.1) for con-
tributions. Thanks also to Mike Frysinger and Brian Harring for proof-reading and suggestions for
fixes and/or clarification.

Chapter 2

EAPIs

2.1 Definition

An EAPI can be thought of as a ‘version’ of this specification to which a package conforms. An
EAPI value is a string as per section 3.1.9, and is part of an ebuild’s metadata.

If a package manager encounters a package version with an unrecognised EAPI, it must not attempt to
perform any operations upon it. It could, for example, ignore the package version entirely (although
this can lead to user confusion), or it could mark the package version as masked. A package manager
must not use any metadata generated from a package with an unrecognised EAPI.

The package manager must not attempt to perform any kind of comparison test other than equality
upon EAPIs.

EAPIs are also used for profile directories, as described in section 5.2.2.

2.2 Defined EAPIs
This specification defines EAPIs ‘0’, ‘1°, 2°, ‘3, ‘4°, ‘5, ‘6°, ‘7’, ‘8’, and ‘9’. EAPI ‘0’ is the
‘original” base EAPI. Each of the later EAPIs contains a number of extensions to its predecessor.

Except where explicitly noted, everything in this specification applies to all of the above EAPISs.

2.3 Reserved EAPIs

* EAPIs whose value consists purely of an integer are reserved for future versions of this speci-
fication.

* EAPIs whose value starts with the string paludis- are reserved for experimental use by the
Paludis package manager.

13

Chapter 3

Names and versions

3.1 Restrictions upon names

No name may be empty. Package managers must not impose fixed upper boundaries upon the length
of any name. A package manager should indicate or reject any name that is invalid according to these
rules.

3.1.1 Category names

A category name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.1.2 Package names

A package name may contain any of the characters [A-Za-z0-9+_-]. It must not begin with a
hyphen or a plus sign, and must not end in a hyphen followed by anything matching the version
syntax described in section 3.2.

Note: A package name does not include the category. The term qualified package name is used
where a category/package pair is meant.

3.1.3 Slot names

A slot name may contain any of the characters [A-Za-z0-9+_. -]. It must not begin with a hyphen,
a dot or a plus sign.

3.1.4 USE flag names

A USE flag name may contain any of the characters [A-Za-z0-9+_@-]. It must begin with an
alphanumeric character. Underscores should be considered reserved for USE_EXPAND, as described
in section 11.1.1.

Note: Usage of the at-sign is deprecated. It was previously required for LINGUAS.

3.1.5 Repository names

A repository name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a
hyphen. In addition, every repository name must also be a valid package name.

3.1.6 Eclass names

An eclass name may contain any of the characters [A-Za-z0-9_. -]. It must begin with a letter or an
underscore. In addition, an eclass cannot be named default.

14

CHAPTER 3. NAMES AND VERSIONS 15

3.1.7 License names

A license name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.1.8 Keyword names

A keyword name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a hyphen.
In contexts where it makes sense to do so, a keyword name may be prefixed by a tilde or a hyphen.
In KEYWORDS, -* is also acceptable as a keyword.

3.1.9 EAPI names

An EAPI name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.2 Version specifications

The package manager must neither impose fixed limits upon the number of version components, nor
upon the length of any component. Package managers should indicate or reject any version that is
invalid according to the rules below.

A version starts with the number part, which is in the form [0-9]+(\.[0-9]+)* (an unsigned
integer, followed by zero or more dot-prefixed unsigned integers).

This may optionally be followed by one of [a-z] (a lower-case letter).

This may be followed by zero or more of the suffixes _alpha, _beta, _pre, _rc or _p, each of
which may optionally be followed by an unsigned integer. Suffix and integer count as separate
version components.

This may optionally be followed by the suffix -r followed immediately by an unsigned integer (the
“revision number”). If this suffix is not present, it is assumed to be -rO0.

3.3 Version comparison

Version specifications are compared component by component, moving from left to right, as detailed
in algorithm 3.1 and sub-algorithms. If a sub-algorithm returns a decision, then that is the result of
the whole comparison; if it terminates without returning a decision, the process continues from the
point from which it was invoked.

3.4 Uniqueness of versions

No two packages in a given repository may have the same qualified package name and equal
versions. For example, a repository may not contain more than one of foo-bar/baz-1.0.2,
foo-bar/baz-1.0.2-r0 and foo-bar/baz-1.000.2.

CHAPTER 3. NAMES AND VERSIONS

16

Algorithm 3.1 Version comparison top-level logic

1:

A o

let A and B be the versions to be compared
compare numeric components using algorithm 3.2
compare letter components using algorithm 3.4
compare suffixes using algorithm 3.5

compare revision components using algorithm 3.7
return A =B

Algorithm 3.2 Version comparison logic for numeric components

1:

N U
A - A =

R A A A o

define the notations Any and Bny to mean the k™ numeric component of A and B respectively,

using 0-based indexing

if Ang > Bng using integer comparison then
return A > B

else if Ang < Bng using integer comparison then
return A < B

end if

let Ann be the number of numeric components of A

let Bnn be the number of numeric components of B

for all i such that i > 1 and i < Ann and i < Bnn, in ascending order do
compare An; and Bn; using algorithm 3.3

: end for

if Ann > Bnn then
return A > B

else if Ann < Bnn then
return A < B

end if

Algorithm 3.3 Version comparison logic for each numeric component after the first

1:
2:

11:

15:

3
4
5:
6:
7
8
9

if either An; or Bn; has a leading O then

let An} be An; with any trailing Os removed

let Bn} be Bn; with any trailing Os removed

if An} > Bn/ using ASCII stringwise comparison then
return A > B

else if An; < Bn) using ASCII stringwise comparison then
return A < B

end if

. else

if An; > Bn; using integer comparison then
return A > B
else if An; < Bn; using integer comparison then
return A < B
end if
end if

Algorithm 3.4 Version comparison logic for letter components

1:

NN AR

let Al be the letter component of A if any, otherwise the empty string
let Bl be the letter component of B if any, otherwise the empty string
if Al > BI using ASCII stringwise comparison then

return A > B
else if Al < Bl using ASCII stringwise comparison then

return A < B
end if

CHAPTER 3. NAMES AND VERSIONS 17

Algorithm 3.5 Version comparison logic for suffixes

I: define the notations As and Bs; to mean the k™ suffix of A and B respectively, using 0-based
indexing

2: let Asn be the number of suffixes of A

3: let Bsn be the number of suffixes of B

4: for all i such that i > 0 and i < Asn and i < Bsn, in ascending order do
5. compare As; and Bs; using algorithm 3.6
6: end for

7. if Asn > Bsn then

8: if Aspsy, is of type _p then

9: return A > B
10: else
11: return A < B
12: endif
13: else if Asn < Bsn then
14: if Bsygy, is of type _p then
15: return A < B
16: else
17: return A > B
18: end if
19: end if

Algorithm 3.6 Version comparison logic for each suffix

1: if As; and Bs; are of the same type (_alpha vs _beta etc) then
let As/ be the integer part of As; if any, otherwise 0
let Bs) be the integer part of Bs; if any, otherwise 0
if As! > Bs/, using integer comparison then
return A > B
else if As. < Bs!, using integer comparison then
return A < B
end if
else if the type of As; is greater than the type of Bs; using the ordering _alpha < _beta <
_pre < _rc < _p then
10: return A > B
11: else
12: return A <B
13: end if

R A A o

Algorithm 3.7 Version comparison logic for revision components

1: let Ar be the integer part of the revision component of A if any, otherwise 0
let Br be the integer part of the revision component of B if any, otherwise 0
if Ar > Br using integer comparison then

return A > B
else if Ar < Br using integer comparison then

return A < B
end if

A ol

Chapter 4

Tree layout

This chapter defines the layout on-disk of an ebuild repository. In all cases below where a file or
directory is specified, a symlink to a file or directory is also valid. In this case, the package manager
must follow the operating system’s semantics for symbolic links and must not behave differently
from normal.

4.1 Top level

An ebuild repository shall occupy one directory on disk, with the following subdirectories:

* One directory per category, whose name shall be the name of the category. The layout of these
directories shall be as described in section 4.2.

* A profiles directory, described in section 4.4.

* A licenses directory (optional), described in section 4.5.

* An eclass directory (optional), described in section 4.6.

* A metadata directory (optional), described in section 4.7.

» Other optional support files and directories (skeleton ebuilds or ChangeLogs, for example)
may exist but are not covered by this specification. The package manager must ignore any of
these files or directories that it does not recognise.

4.2 Category directories

Each category provided by the repository (see also: the profiles/categories file, section 4.4)
shall be contained in one directory, whose name shall be that of the category. Each category directory
shall contain:

* A metadata.xml file, as described in appendix A. Optional.
» Zero or more package directories, one for each package in the category, as described in sec-
tion 4.3. The name of the package directory shall be the corresponding package name.

Category directories may contain additional files, whose purpose is not covered by this specification.
Additional directories that are not for a package may not be present, to avoid conflicts with package
name directories; an exception is made for filesystem components whose name starts with a dot,
which the package manager must ignore, and for any directory named CVS.

It is not required that a directory exists for each category provided by the repository. A category
directory that does not exist shall be considered equivalent to an empty category (and by extension,
a package manager may treat an empty category as a category that does not exist).

18

CHAPTER 4. TREE LAYOUT 19

4.3 Package directories

A package directory contains the following:

e Zero or more ebuilds. These are as described in chapter 6 and others.

* Ametadata.xml file, as described in appendix A. Optional only for legacy support.

* A ChangeLog, in a format determined by the provider of the repository. Optional.

* A Manifest file, whose format is described in [1]. Can be omitted if the file would be empty.
* A files directory, containing any support files needed by the ebuilds. Optional.

Any ebuild in a package directory must be named name-ver.ebuild, where name is the (unquali-
fied) package name, and ver is the package’s version. Package managers must ignore any ebuild file
that does not match these rules.

A package directory that contains no correctly named ebuilds shall be considered a package with no
versions. A package with no versions shall be considered equivalent to a package that does not exist
(and by extension, a package manager may treat a package that does not exist as a package with no
versions).

A package directory may contain other files or directories, whose purpose is not covered by this
specification.

4.4 The profiles directory

The profiles directory shall contain zero or more profile directories as described in chapter 5, as well
as the following files and directories. In any line-based file, lines beginning with a # character are
treated as comments, whilst blank lines are ignored. All contents of this directory, with the exception
of repo_name, are optional.

The profiles directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the profiles directory; a package
manager must not attempt to use any repository whose profiles directory requires an EAPI it does
not support. If no eapi file is present, EAPI 0 shall be used.

If the repository is not intended to be stand-alone, the contents of these files are to be taken from or
merged with the master repository as necessary; this does not apply to the eapi file.

Other files not described by this specification may exist, but may not be relied upon. The package
manager must ignore any files in this directory that it does not recognise.

arch.list Contains a list, one entry per line, of permissible values for the ARCH variable, and hence
permissible keywords for packages in this repository.

categories Contains a list, one entry per line, of categories provided by this repository.
eapi See above.

info_pkgs Contains a list, one entry per line, of qualified package names. Any package matching
one of these is to be listed when a package manager displays a ‘system information’ listing.

info_vars Contains a list, one entry per line, of profile, configuration, and environment variables
which are considered to be of interest. The value of each of these variables may be shown
when the package manager displays a ‘system information’ listing.

package.mask Contains a list, one entry per line, of package dependency specifications (using the
directory’s EAPI). Any package version matching one of these is considered to be masked,
and will not be installed regardless of profile unless it is unmasked by the user configuration.

For EAPIs listed in table 4.1 as supporting it, package .mask can be a directory instead of] PACKAGE-MASK-DIR

a regular file. Files contained in that directory, unless their name begins with a dot, will be
concatenated in order of their filename in the POSIX locale and the result will be processed as
if it were a single file. Any subdirectories will be ignored.

profiles.desc Described below in section 4.4.1.

CHAPTER 4. TREE LAYOUT 20

Table 4.1: EAPIs supporting a directory for package .mask

EAPI package.mask can be a directory?
0,1,2,3,4,5,6 No
7,8,9 Yes

repo_name Contains, on a single line, the name of this repository. The repository name must con-
form to section 3.1.5.

thirdpartymirrors Described below in section 4.4.2.

use.desc Contains descriptions of valid global USE flags for this repository. The format is described
in section 4.4.3.

use.local.desc Contains descriptions of valid local USE flags for this repository, along with the
packages to which they apply. The format is as described in section 4.4.3.

desc/ This directory contains files analogous to use.desc for the various USE_EXPAND variables.
Each file in it is named <varname>.desc, where <varname> is the variable name, in lower
case, whose possible values the file describes. The format of each file is as for use.desc,
described in section 4.4.3. The USE_EXPAND name is not included as a prefix here.

updates/ This directory is described in section 4.4.4.

4.4.1 The profiles.desc file

profiles.descis aline-based file, with the standard commenting rules from section 4.4, containing
a list of profiles that are valid for use, along with their associated architecture and status. Each line
has the format:

<keyword> <profile path> <stability>
Where:

* <keyword> is the default keyword for the profile and the ARCH for which the profile is valid.

* <profile path> is the (relative) path from the profiles directory to the profile in question.

e <stability> indicates the stability of the profile. This may be useful for QA tools, which
may wish to display warnings with a reduced severity for some profiles. The values stable
and dev are widely used, but repositories may use other values.

Fields are whitespace-delimited.

4.4.2 The thirdpartymirrors file

thirdpartymirrors is another simple line-based file, describing the valid mirrors for use with
mirror:// URIs in this repository, and the associated download locations. The format of each line
is:

<mirror name> <mirror 1> <mirror 2> ... <mirror n>

Fields are whitespace-delimited. When parsing a URI of the form mirror://name/path/
filename, where the path/ part is optional, the thirdpartymirrors file is searched for a line
whose first field is name. Then the download URIs in the subsequent fields have path/filename
appended to them to generate the URIs from which a download is attempted.

Each mirror name may appear at most once in a file. Behaviour when a mirror name appears multiple
times is undefined. Behaviour when a mirror is defined in terms of another mirror is undefined. A
package manager may choose to fetch from all of or a subset of the listed mirrors, and may use an
order other than the one described.

The mirror with the name equal to the repository’s name (and if the repository has a master, the
master’s name) may be consulted for all downloads.

CHAPTER 4. TREE LAYOUT 21

Table 4.2: Naming rules for files in updates directory for EAPIs

EAPI Files per quarter year?
0,1,2,3,4,5,6,7 Yes
8,9 No

4.4.3 use.desc and related files

use.desc contains descriptions of every valid global USE flag for this repository. It is a line-based
file with the standard rules for comments and blank lines. The format of each line is:

<flagname> - <description>

use.local.desc contains descriptions of every valid local USE flag—those that apply only to a
small number of packages, or that have different meanings for different packages. Its format is:

<category/package>:<flagname> - <description>

Flags must be listed once for each package to which they apply, or if a flag is listed in both use . desc
and use.local.desc, it must be listed once for each package for which its meaning differs from
that described in use.desc.

4.4.4 The updates directory

The updates directory is used to inform the package manager that a package has moved categories,
names, or that a version has changed SLOT. For EAPISs so specified by table 4.2, it contains one file
per quarter year, named [1-4]Q-[YYYY] for the first to fourth quarter of a given year, for example
1Q-2004 or 3Q-2006. For other EAPIs, all regular files in this directory will be processed, unless
their name begins with a dot.

The format of each file is again line-based, with each line having one of the following formats:

move <gpnl> <gpn2>
slotmove <spec> <slotl> <slot2>

The first form, where qpn1 and qpn2 are qualified package names, instructs the package manager
that the package gpn1 has changed name, category, or both, and is now called qpn2.

The second form instructs the package manager that any currently installed package version matching
package dependency specification spec whose SLOT is set to slot1 should have it updated to slot2.

It is unspecified in what order the files in the updates directory are processed. Lines within each
file are processed in ascending order.

At any given time, a name that appears as the origin of a move may not be used as a qualified package
name in the repository. A slot that appears as the origin of a slot move may not be used by packages
matching the spec of that slot move.

4.5 The licenses directory

The 1icenses directory shall contain copies of the licenses used by packages in the repository. Each
file will be named according to the name used in the LICENSE variable as described in section 7.3,
and will contain the complete text of the license in human-readable form. Plain text format is strongly
preferred but not required.

4.6 The eclass directory

The eclass directory shall contain copies of the eclasses provided by this repository. The format of
these files is described in chapter 10. It may also contain, in their own directory, support files needed
by these eclasses.

’ UPDATES-FILENAMES

CHAPTER 4. TREE LAYOUT 22

4.7 The metadata directory

The metadata directory contains various repository-level metadata that are not contained in
profiles/. All contents are optional. In this standard only the cache subdirectory is described;
other contents are optional but may include security advisories, DTD files for the various XML files
used in the repository, and repository timestamps.

4.7.1 The metadata cache

The metadata/cache directory may contain a cached form of all important ebuild metadata vari-
ables. The contents of this directory are described in chapter 14.

Chapter 5

Profiles

5.1 General principles

Generally, a profile defines information specific to a certain ‘type’ of system—it lies somewhere
between repository-level defaults and user configuration in that the information it contains is not
necessarily applicable to all machines, but is sufficiently general that it should not be left to the user
to configure it. Some parts of the profile can be overridden by user configuration, some only by
another profile.

The format of a profile is relatively simple. Each profile is a directory containing any number of the
files described in this chapter, and possibly inheriting another profile. The files themselves follow a
few basic conventions as regards inheritance and format; these are described in the next section. It
may also contain any number of subdirectories containing other profiles.

5.2 Files that make up a profile

5.2.1 The parent file

A profile may contain a parent file. Each line must contain a relative path to another profile which
will be considered as one of this profile’s parents. Any settings from the parent are inherited by this
profile, and can be overridden by it. Precise rules for how settings are combined with the parent
profile vary between files, and are described below. Parents are handled depth first, left to right, with
duplicate parent paths being sourced for every time they are encountered.

It is illegal for a profile’s parent tree to contain cycles. Package manager behaviour upon encounter-
ing a cycle is undefined.

This file must not make use of line continuations. Blank lines and those beginning with a # are
discarded.

5.2.2 The eapifile

A profile directory may contain an eapi file. This file, if it exists, must contain a single line with the
name of an EAPI. This specifies the EAPI to use when handling the directory in question; a package
manager must not attempt to use any profile using a directory which requires an EAPI it does not
support.

If no eapi file is present, the default depends on the EAPI of the top-level profiles directory (see
section 4.4). That EAPI shall be used if table 5.1 lists it as “top-level”. Otherwise, EAPI 0 shall be
used.

The EAPI is neither inherited via the parent file nor in subdirectories.

23

’ PROFILE-EAPI-DEFAULT

CHAPTER 5. PROFILES 24

Table 5.1: Default EAPI for profiles

EAPI Default EAPI?
0,1,2,3,4,5,6,7,8 0
9 Top-level

Table 5.2: EAPIs supporting directories for profile files

EAPI Supports directories for profile files?
0,1,2,3,4,5,6 No
7,8,9 Yes

5.2.3 deprecated

If a profile contains a file named deprecated, it is treated as such. The first line of this file should
contain the path from the profiles directory of the repository to a valid profile that is the recom-
mended upgrade path from this profile. The remainder of the file can contain any text, which may
be displayed to users using this profile by the package manager. This file is not inherited—profiles
which inherit from a deprecated profile are not deprecated.

This file must not contain comments or make use of line continuations.

5.2.4 make.defaults

make.defaults is used to define defaults for various environment and configuration variables. This
file is unusual in that it is not combined at a file level with the parent—instead, each variable is
combined or overridden individually as described in section 5.3.

The file itself is a line-based key-value format. Each line contains a single VAR="value" entry,
where the value must be double quoted. A variable name must start with one of a-zA-Z and may
contain a-zA-Z0-9_ only. Additional syntax, which is a small subset of bash syntax, is allowed as
follows:

* Variables to the right of the equals sign in the form ${foo} or $foo are recognised and ex-
panded from variables previously set in this or earlier make . defaults files.

* One logical line may be continued over multiple physical lines by escaping the newline with
a backslash. A quoted string may be continued over multiple physical lines by either a simple
newline or a backslash-escaped newline.

* Backslashes, except for line continuations, are not allowed.

5.2.5 Simple line-based files

These files are a simple one-item-per-line list, which is inherited in the following manner: the parent
profile’s list is taken, and the current profile’s list appended. If any line begins with a hyphen, then
any lines previous to it whose contents are equal to the remainder of that line are removed from the
list. Blank lines and those beginning with a # are discarded.

In EAPIs listed in table 5.2 as supporting directories for profile files, any of the files package . mask,
package.use, use.* and package .use.* mentioned below can be a directory instead of a regular
file. Files contained in that directory, unless their name begins with a dot, will be concatenated in
order of their filename in the POSIX locale and the result will be processed as if it were a single file.
Any subdirectories will be ignored.

5.2.6 packages

The packages file is used to define the ‘system set’ for this profile. After the above rules for in-
heritance and comments are applied, its lines must take one of two forms: a package dependency

’ PROFILE-FILE-DIRS

CHAPTER 5. PROFILES 25

Table 5.3: EAPIs supporting package . provided in profiles

EAPI Supports package.provided?
0,1,2,3,4,5,6 Optionally
7,8,9 No

specification prefixed by * denotes that it forms part of the system set. A package dependency spec-
ification on its own may also appear for legacy reasons, but should be ignored when calculating the
system set.

5.2.7 packages.build

The packages.build file is used by Gentoo’s Catalyst tool to generate stagel tarballs, and has no
relevance to the operation of a package manager. It is thus outside the scope of this document, but is
mentioned here for completeness.

5.2.8 package.mask

package .mask is used to prevent packages from being installed on a given profile. Each line con-
tains one package dependency specification; anything matching this specification will not be installed
unless unmasked by the user’s configuration. In some EAPIs, package .mask can be a directory in-
stead of a regular file as per section 5.2.5.

Note that the -spec syntax can be used to remove a mask in a parent profile, but not necessarily a
global mask (from profiles/package .mask, section 4.4).

Note: Portage currently treats profiles/package.mask as being on the leftmost branch of the
inherit tree when it comes to -1ines. This behaviour may not be relied upon.

5.2.9 package.provided

package.provided is used to tell the package manager that a certain package version should be
considered to be provided by the system regardless of whether it is actually installed. Because it has
severe adverse effects on USE-based and slot-based dependencies, its use is strongly deprecated and
package manager support must be regarded as purely optional. Supported in EAPIs as per table 5.3.

5.2.10 package.use

The package . use file may be used by the package manager to override the default USE flags spec-
ified by make.defaults on a per package basis. The format is to have a package dependency
specification, and then a space delimited list of USE flags to enable. A USE flag in the form of
-flag indicates that the package should have the USE flag disabled. The package dependency spec-
ification is limited to the forms defined by the directory’s EAPI. In some EAPIs, package.use can
be a directory instead of a regular file as per section 5.2.5.

5.2.11 use.stable and package.use.stable

The use.stable and package.use.stable files may be used to override the default USE flags
specified by make .defaults. They only apply to packages that are merged due to a stable keyword
in the sense of section 7.3.3. Each line in use.stable contains a USE flag to enable; the -flag
syntax indicates that the flag should be disabled. The package.use.stable file uses the same
format as package.use. USE_EXPAND values may be enabled or disabled by using expand_name_
value.

Stable restrictions are applied exactly when the following condition holds: If every stable keyword
in KEYWORDS were replaced with its tilde-prefixed counterpart (see section 7.3.3), then the resulting
KEYWORDS setting would prevent installation of the package.

| PACKAGE-PROVIDED

USE-STABLE

CHAPTER 5. PROFILES 26

Table 5.4: EAPIs supporting use. stable and package.use.stable in profiles

EAPI Supports use.stable? Supports package.use.stable?
0,1,2,3,4,5,6,7,8 No No
9 Yes Yes

Table 5.5: Profile directory support for masking/forcing use flags in stable versions only

EAPI Supports masking/forcing use flags in stable versions?
0,1,2,3,4 No
5,6,7,8,9 Yes

If a flag appears in more than one of package.use, use.stable and package.use.stable, then
package.use.stable takes precedence over package.use, which in turn takes precedence over
use.stable.

These files are supported in EAPIs as per table 5.4. They can be directories instead of regular files as
per section 5.2.5.

5.2.12 USE masking and forcing

This section covers the eight files use .mask, use.force, use.stable.mask, use.stable.force,
package.use.mask, package.use.force, package.use.stable.mask, and package.use.
stable.force. They are described together because they interact in a non-trivial manner. In some
EAPIs, these files can be directories instead of regular files as per section 5.2.5.

Simply speaking, use.mask and use.force are used to say that a given USE flag must
never or always, respectively, be enabled when using this profile. package.use.mask and
package.use.force do the same thing on a per-package, or per-version, basis.

In profile directories with an EAPI supporting stable masking, as listed in table 5.5, the same is true
for use.stable.mask, use.stable.force, package.use.stable.mask and package.use.
stable.force. These files, however, only act on packages that are merged due to a stable key-
word in the sense of section 7.3.3. Thus, these files can be used to restrict the feature set deemed
stable in a package.

The precise manner in which the eight files interact is less simple, and is best described in terms
of the algorithm used to determine whether a flag is masked for a given package version. This is
described in algorithm 5.1.

Stable restrictions (“stable keyword in use” in algorithm 5.1) are applied exactly when the following
condition holds: If every stable keyword in KEYWORDS were replaced with its tilde-prefixed coun-
terpart (see section 7.3.3), then the resulting KEYWORDS setting would prevent installation of the
package.

The logic for use.force, use.stable.force, package.use.force, and package.use.
stable.force is identical. If a flag is both masked and forced, the mask is considered to take
precedence.

USE_EXPAND values may be forced or masked by using expand_name_value.

A package manager may treat ARCH values that are not the current architecture as being masked.

5.3 Profile variables

This section documents variables that have special meaning, or special behaviour, when defined in a
profile’s make .defaults file.

STABLEMASK

CHAPTER 5. PROFILES 27

Algorithm 5.1 USE masking logic

1: let masked = false
2: for each profile in the inheritance tree, depth first do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

4
5:
6:
7
8
9

if use .mask contains flag then
let masked = true
else if use .mask contains -flag then
let masked = false
end if
if stable keyword in use then
if use.stable.mask contains flag then
let masked = true
else if use. stable.mask contains -flag then
let masked = false
end if
end if
for each /ine in package.use.mask, in order, for which the spec matches package do
if line contains flag then
let masked = true
else if /ine contains -flag then
let masked = false
end if
end for
if stable keyword in use then
for each /ine in package.use.stable.mask, in order, for which the spec matches package do
if line contains flag then
let masked = true
else if /ine contains -flag then
let masked = false
end if
end for
end if

31: end for

CHAPTER 5. PROFILES 28

Table 5.6: Profile-defined IUSE injection for EAPIs

EAPI Supports profile-defined IUSE injection?

0,1,2,3,4 No
5,6,7,8,9 Yes

Table 5.7: Profile-defined unsetting of variables in EAPIs

EAPI Supports ENV_UNSET?
0,1,2,3,4,5,6 No
7,8,9 Yes

5.3.1 Incremental variables

Incremental variables must stack between parent and child profiles in the following manner: Begin-
ning with the highest parent profile, tokenise the variable’s value based on whitespace and concate-
nate the lists. Then, for any token 7 beginning with a hyphen, remove it and any previous tokens
whose value is equal to 7 with the hyphen removed, or, if T is equal to -*, remove all previous
values. Note that because of this treatment, the order of tokens in the final result is arbitrary, not nec-
essarily related to the order of tokens in any given profile. The following variables must be treated in
this fashion:

¢ USE

¢ USE_EXPAND

¢ USE_EXPAND_HIDDEN

¢ CONFIG_PROTECT

¢ CONFIG_PROTECT_MASK

If the package manager supports any EAPI listed in table 5.6 as using profile-defined IUSE injection,
the following variables must also be treated incrementally; otherwise, the following variables may or
may not be treated incrementally:

¢ TUSE_IMPLICIT
¢ USE_EXPAND_IMPLICIT
¢ USE_EXPAND_UNPREFIXED

If the package manager supports any EAPI listed in table 5.7 as using ENV_UNSET, the following
variable must also be treated incrementally; otherwise, it may or may not be treated incrementally:

¢ ENV_UNSET

Other variables, except where they affect only package-manager-specific functionality (such as
Portage’s FEATURES variable), must not be treated incrementally—later definitions shall completely
override those in parent profiles.

5.3.2 Specific variables and their meanings
The following variables have specific meanings when set in profiles.

ARCH The system’s architecture. Must be a value listed in profiles/arch.1list; see section 4.4
for more information. Must be equal to the primary KEYWORD for this profile.

CONFIG_PROTECT, CONFIG_PROTECT_MASK Contain whitespace-delimited lists used to
control the configuration file protection. Described more fully in section 13.3.3.

USE Defines the list of default USE flags for this profile. Flags may be added or removed by the
user’s configuration. USE_EXPAND values must not be specified in this way.

CHAPTER 5. PROFILES 29

USE_EXPAND Defines a list of variables which are to be treated incrementally, exported to the
ebuild environment, and whose contents are to be expanded into the USE variable as passed to
ebuilds. See section 11.1.1 for details.

USE_EXPAND_UNPREFIXED Similar to USE_EXPAND, but no prefix is used. If the repository
contains any package using an EAPI supporting profile-defined IUSE injection (see table 5.6),
this list must contain at least ARCH. See section 11.1.1 for details.

USE_EXPAND_HIDDEN Contains a (possibly empty) subset of names from USE_EXPAND and
USE_EXPAND_UNPREFIXED. The package manager may use this set as a hint to avoid display-
ing uninteresting or unhelpful information to an end user.

USE_EXPAND_IMPLICIT, IUSE_IMPLICIT Used to inject implicit values into IUSE. See sec-
tion 11.1.1 for details. USE_EXPAND_IMPLICIT contains a subset of names from USE_EXPAND
and USE_EXPAND_UNPREFIXED.

ENV_UNSET Contains a whitespace-delimited list of variables that the package manager shall un-
set. See section 11.1 for details.

In addition, for EAPIs listed in table 5.6 as supporting profile defined IUSE injection, the following
variables have special handling as described in section 11.1.1:

¢ All variables named in USE_EXPAND and USE_EXPAND_UNPREFIXED.
e All USE_EXPAND_VALUES_${v} variables, where ${v} is a value in USE_EXPAND_IMPLICIT.

Any other variables set in make . defaults must be passed on into the ebuild environment as-is, and
are not required to be interpreted by the package manager.

Chapter 6

Ebuild file format

The ebuild file format is in its basic form a subset of the format of a bash script. The interpreter is
assumed to be GNU bash, version as listed in table 6.1, or any later version. If possible, the package

manager should set the shell’s compatibility level to the exact version specified. It must ensure

that any such compatibility settings (e. g. the BASH_COMPAT variable) are not exported to external

programs.

The file creation mask (umask) is set to 022 in the shell execution environment. It is not saved
between phase functions but always reset to this initial value.

For EAPIs listed such in table 6.1, the failglob option of bash is set in the global scope of ebuilds.
If set, failed pattern matches during filename expansion result in an error when the ebuild is being
sourced.

Name reference variables (introduced in bash version 4.3) must not be used, except in local scope.

The file encoding must be UTF-8 with Unix-style newlines. When sourced, the ebuild must define
certain variables and functions (see chapters 7 and 9 for specific information), and must not call any
external programs, write anything to standard output or standard error, or modify the state of the
system in any way.

Table 6.1: Bash version and options

EAPI Bash version failglob in global scope?
0,1,2,3,4,5 32 No
6,7 4.2 Yes
8 5.0 Yes
9 5.2 Yes

30

Chapter 7

Ebuild-defined variables

Note: This chapter describes variables that may or must be defined by ebuilds. For variables that are
passed from the package manager to the ebuild, see section 11.1.

If any of these variables are set to invalid values, or if any of the mandatory variables are undefined,
the package manager’s behaviour is undefined; ideally, an error in one ebuild should not prevent
operations upon other ebuilds or packages.

7.1 Metadata invariance

All ebuild-defined variables discussed in this chapter must be defined independently of any system,
profile or tree dependent data, and must not vary depending upon the ebuild phase. In particular,
ebuild metadata can and will be generated on a different system from that upon which the ebuild will
be used, and the ebuild must generate identical metadata every time it is used.

Globally defined ebuild variables without a special meaning must similarly not rely upon variable
data.

7.2 Mandatory ebuild-defined variables

All ebuilds must define at least the following variables:

DESCRIPTION A short human-readable description of the package’s purpose. May be defined by
an eclass. Must not be empty.

SLOT The package’s slot. Must be a valid slot name, as per section 3.1.3. May be defined by an
eclass. Must not be empty.

In EAPIs shown in table 8.7 as supporting sub-slots, the SLOT variable may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character. The sub-slot must
be a valid slot name, as per section 3.1.3. The sub-slot is used to represent cases in which
an upgrade to a new version of a package with a different sub-slot may require dependent
packages to be rebuilt. When the sub-slot part is omitted from the SLOT definition, the package
is considered to have an implicit sub-slot which is equal to the regular slot.

7.3 Optional ebuild-defined variables

Ebuilds may define any of the following variables. Unless otherwise stated, any of them may be
defined by an eclass.

EAPI The EAPI. See below in section 7.3.1.

HOMEPAGE The URI or URIs for a package’s homepage, including protocols. See section 8.2 for
full syntax.

31

CHAPTER 7. EBUILD-DEFINED VARIABLES 32

Table 7.1: EAPIs supporting IUSE defaults

EAPI Supports IUSE defaults?

0 No
1,2,3,4,5,6,7,8,9 Yes

Table 7.2: EAPIs supporting various ebuild-defined variables

EAPI Supports PROPERTIES? Supports REQUIRED_USE?
0,1,2,3 Optionally No
4,5,6,7,8,9 Yes Yes

SRC_URI A list of source URISs for the package. Valid protocols are http://, https://, ftp://
and mirror:// (see section 4.4.2 for mirror behaviour). Fetch restricted packages may in-
clude URL parts consisting of just a filename. See section 7.3.2 for description and section 8.2
for full syntax.

LICENSE The package’s license. Each text token must be a valid license name, as per section 3.1.7,
and must correspond to a tree “licenses/” entry (see section 4.5). See section 8.2 for full syntax.

KEYWORDS A whitespace separated list of keywords for the ebuild. Each token must be a valid
keyword name, as per section 3.1.8. See section 7.3.3 for full syntax.

IUSE The USE flags used by the ebuild. Any eclass that works with USE flags must also set IUSE,
listing only the variables used by that eclass. The package manager is responsible for merging
these values. See section 11.1.1 for discussion on which values must be listed in this variable.

In EAPIs shown in table 7.1 as supporting IUSE defaults, any use flag name in TUSE may be
prefixed by at most one of a plus or a minus sign. If such a prefix is present, the package man-
ager may use it as a suggestion as to the default value of the use flag if no other configuration
overrides it.

REQUIRED_USE Zero or more assertions that must be met by the configuration of USE flags to be
valid for this ebuild. See section 7.3.4 for description and section 8.2 for full syntax. Only in
EAPIs listed in table 7.2 as supporting REQUIRED_USE.

PROPERTIES Zero or more properties for this package. See section 7.3.5 for value meanings and
section 8.2 for full syntax. For EAPIs listed in table 7.2 as having optional support, ebuilds
must not rely upon the package manager recognising or understanding this variable in any way.

RESTRICT Zero or more behaviour restrictions for this package. See section 7.3.6 for value mean-
ings and section 8.2 for full syntax.

DEPEND See chapter 8.
BDEPEND See chapter 8.

RDEPEND See chapter 8. For some EAPIs, RDEPEND has special behaviour for its value if unset
and when used with an eclass. See section 7.3.7 for details.

PDEPEND See chapter 8.
IDEPEND See chapter 8.

7.3.1 EAPI

An empty or unset EAPT value is equivalent to 0. Ebuilds must not assume that they will get a
particular one of these two values if they are expecting one of these two values.

The package manager must either pre-set the EAPI variable to O or ensure that it is unset before
sourcing the ebuild for metadata generation. When using the ebuild for other purposes, the package

| IUSE-DEFAULTS

REQUIRED-USE

PROPERTIES

CHAPTER 7. EBUILD-DEFINED VARIABLES 33

Table 7.3: EAPIs supporting SRC_URI arrows and selective URI restrictions

EAPI Supports SRC_URI arrows? Supports selective URI restrictions?
0,1 No No
2,3,4,5,6,7 Yes No
8,9 Yes Yes

i

manager must either pre-set EAPI to the value specified by the ebuild’s metadata or ensure that it is
unset.

If any of these variables are set to invalid values, the package manager’s behaviour is undefined;
ideally, an error in one ebuild should not prevent operations upon other ebuilds or packages.

If the EAPI is to be specified in an ebuild, the EAPI variable must be assigned to precisely once.
The assignment must not be preceded by any lines other than blank lines or those that start with
optional whitespace (spaces or tabs) followed by a # character, and the line containing the assignment
statement must match the following regular expression:

~[\tI*EAPI=([’"]17) ([A-Za-z0-9+_.-1%)\1[\tl*([\tl#.%)7$

The package manager must determine the EAPI of an ebuild by parsing its first non-blank and non-
comment line, using the above regular expression. If it matches, the EAPI is the substring matched
by the capturing parentheses (O if empty), otherwise it is 0. For a recognised EAPI, the package
manager must make sure that the EAPI value obtained by sourcing the ebuild with bash is identical
to the EAPI obtained by parsing. The ebuild must be treated as invalid if these values are different.

Eclasses must not attempt to modify the EAPI variable.

7.3.2 SRC_URI

All filename components that are enabled (i. e. not inside a use-conditional block that is not matched)
in SRC_URI must be available in the DISTDIR directory. In addition, these components are used to
make the A and AA variables.

If a component contains a full URI with protocol, that download location must be used. Package
managers may also consult mirrors for their files.

The special mirror:// protocol must be supported. See section 4.4.2 for mirror details.

The RESTRICT metadata key can be used to impose additional restrictions upon downloading—see
section 7.3.6 for details. Fetch restricted packages may use a simple filename instead of a full URIL.

In EAPIs listed in table 7.3 as supporting arrows, if an arrow is used, the filename used when saving
to DISTDIR shall instead be the name on the right of the arrow. When consulting mirrors (except for
those explicitly listed on the left of the arrow, if mirror:// is used), the filename to the right of the
arrow shall be requested instead of the filename in the URI.

In EAPIs listed in table 7.3 as supporting selective URI restrictions, the URI protocol can be prefixed
by an additional fetch+ or mirror+ term. If the ebuild is fetch restricted, the fetch+ prefix undoes
the fetch restriction for the URI (but not the implied mirror restriction). If the ebuild is fetch or mirror
restricted, the mirror+ prefix undoes both fetch and mirror restrictions for the URI.

7.3.3 Keywords

Keywords are used to indicate levels of stability of a package on a respective architecture arch. The
following conventions are used:

* arch: Both the package version and the ebuild are widely tested, known to work and not have
any serious issues on the indicated platform. This is referred to as a stable keyword.

[SRC-URI-ARROWS

URI-RESTRICT

CHAPTER 7. EBUILD-DEFINED VARIABLES 34

* “arch: The package version and the ebuild are believed to work and do not have any known
serious bugs, but more testing is required before the package version is considered suitable for
obtaining a stable keyword. This is referred to as an unstable keyword or a testing keyword.

* No keyword: It is not known whether the package will work, or insufficient testing has oc-
curred.

e -arch: The package version will not work on the architecture.

The -* keyword is used to indicate package versions which are not worth trying to test on unlisted
architectures.

An empty KEYWORDS variable indicates uncertain functionality on any architecture.

7.3.4 USE state constraints

REQUIRED_USE contains a list of assertions that must be met by the configuration of USE flags to be
valid for this ebuild. In order to be matched, a USE flag in a terminal element must be enabled (or
disabled if it has an exclamation mark prefix).

If the package manager encounters a package version where REQUIRED_USE assertions are not met,
it must treat this package version as if it was masked. No phase functions must be called.

It is an error for a flag to be used if it is not included in TUSE_EFFECTIVE.

7.3.5 Properties

The following tokens are permitted inside PROPERTIES:

interactive The package may require interaction with the user via the tty.

live The package uses “live” source code that may vary each time that the package is installed.

test_network The package manager may run tests that require an internet connection, even if the
ebuild has RESTRICT=test.

test_privileged The package manager may run tests that require superuser privileges, even if the
ebuild has RESTRICT=test.

Package managers may recognise other tokens. Ebuilds may not rely upon any token being sup-
ported.

7.3.6 Restrict
The following tokens are permitted inside RESTRICT:

mirror The package’s SRC_URI entries may not be mirrored, and mirrors should not be checked
when fetching.

fetch The package’s SRC_URI entries may not be downloaded automatically. If entries are not avail-
able, pkg_nofetch is called. Implies mirror.

strip No stripping of debug symbols from files to be installed may be performed. In EAPIs listed in
table 12.19 as supporting controllable stripping, this behaviour may be altered by the dostrip
command.

userpriv The package manager may not drop superuser privileges when building the package.
test The src_test phase must not be run.

Package managers may recognise other tokens, but ebuilds may not rely upon them being supported.

7.3.7 RDEPEND value

In EAPIs listed in table 7.4 as having RDEPEND=DEPEND, if RDEPEND is unset (but not if it is set to
an empty string) in an ebuild, when generating metadata the package manager must treat its value as
being equal to the value of DEPEND.

’ RDEPEND-DEPEND

CHAPTER 7. EBUILD-DEFINED VARIABLES 35

Table 7.4: EAPIs with RDEPEND=DEPEND default

EAPI RDEPEND=DEPEND?
0,1,2,3 Yes
4,5,6,7,8,9 No

Table 7.5: EAPIs supporting DEFINED_PHASES

EAPI Supports DEFINED_PHASES?

0,1,2,3 Optionally
4,5,6,7,8,9 Yes

When dealing with eclasses, only values set in the ebuild itself are considered for this behaviour; any
DEPEND or RDEPEND set in an eclass does not change the implicit RDEPEND=DEPEND for the ebuild
portion, and any DEPEND value set in an eclass does not get treated as being part of RDEPEND.

7.4 Magic ebuild-defined variables

The following variables must be defined by inherit (see section 10.1), and may be considered to
be part of the ebuild’s metadata:

ECLASS The current eclass, or unset if there is no current eclass. This is handled magically by
inherit and must not be modified manually.

INHERITED List of inherited eclass names. Again, this is handled magically by inherit.

Note: Thus, by extension of section 7.1, inherit may not be used conditionally, except upon
constant conditions.

The following is a special variable defined by the package manager for internal use and may or may
not be available in the ebuild environment:

DEFINED_PHASES A space separated arbitrarily ordered list of phase names (e.g. configure
setup unpack) whose phase functions are defined by the ebuild or an eclass inherited by the
ebuild. If no phase functions are defined, a single hyphen is used instead of an empty string.
For EAPIs listed in table 7.5 as having optional DEFINED_PHASES support, package managers
may not rely upon the metadata cache having this variable defined, and must treat an empty
string as “this information is not available”.

Note: Thus, by extension of section 7.1, phase functions must not be defined based upon any variant
condition.

For EAPIs listed in table 11.1 with the property that variables are not exported, the package manager
must not export any of the variables specified in this section to the environment.

| DEFINED-PHASES

Chapter 8

Dependencies

8.1 Dependency classes

There are three classes of dependencies supported by ebuilds:

* Build dependencies (DEPEND). These must be installed and usable before the pkg_setup phase
function is executed as a part of source build and throughout all src_* phase functions exe-
cuted as part of that build. These may not be installed at all if a binary package is being
merged.

* Runtime dependencies (RDEPEND). These must be installed and usable before the results of an
ebuild merging are treated as usable.

* Post dependencies (PDEPEND). These must be installed at some point before the package man-
ager finishes the batch of installs.

Additionally, in EAPIs listed in table 8.4 as supporting BDEPEND, the build dependencies are split
into two subclasses:

* BDEPEND build dependencies that are binary compatible with the native build system (CBUILD).
The ebuild is allowed to call binary executables installed by this kind of dependency.

* DEPEND build dependencies that are binary compatible with the system being built (CHOST).
The ebuild must not execute binary executables installed by this kind of dependency.

Additionally, in EAPIs listed in table 8.4 as supporting IDEPEND, install-time dependencies can be
specified. These dependencies are binary compatible with the native build system (CBUILD). Ebuilds

are allowed to call them in pkg_preinst and pkg_postinst. Ebuilds may also call them in pkg_

prerm and pkg_postrm but must not rely on them being available.

Table 8.1: Dependency classes required to be satisfied for a particular phase function

Phase function Satisfied dependency classes
pkg_pretend, pkg_info, None (ebuilds can rely only on the packages in the
pkg_nofetch system set)
pkg_setup Same as src_unpack if executed as part of source build,

same as pkg_pretend otherwise

src_unpack, src_prepare, DEPEND, BDEPEND
src_configure, src_compile,
src_test, src_install

pkg_preinst, pkg_postinst, RDEPEND, IDEPEND
pkg_prerm, pkg_postrm

pkg_config RDEPEND, PDEPEND

36

CHAPTER 8. DEPENDENCIES

Table 8.2: Summary of other interfaces related to dependency classes

BDEPEND, IDEPEND DEPEND RDEPEND, PDEPEND
Binary compatible with CBUILD CHOST CHOST
Base unprefixed path / ${SYSROOT} ${ROOT}
Relevant offset-prefix ${BROOT?} See table 8.3 ${EPREFIX}
Path combined with prefix ~ ${BROOT?} ${ESYSROOT} ${EROOT}
PM query command option -b -d -r

Table 8.3: Prefix values for DEPEND

If SYSROOT is: ${ROOT} Empty, and ROOT is non-empty ~ Other
Then offset-prefix is: ${EPREFIX} ${BROOT} Empty
And ESYSROOT is: ${EROOT?} ${BROOT?} ${SYSROOT?}

Table 8.4: EAPIs supporting additional dependency types

EAPI Supports BDEPEND? Supports IDEPEND?
0,1,2,3,4,5,6 No No
7 Yes No
8,9 Yes Yes

37

Table 8.1 lists dependencies which must be satisfied before a particular phase function is executed.

Table 8.2 summarises additional interfaces related to the dependency classes.

In addition, HOMEPAGE, SRC_URI, LICENSE, REQUIRED_USE, PROPERTIES and RESTRICT use

dependency-style specifications to specify their values.

8.2 Dependency specification format

The following elements are recognised in at least one class of specification. All elements must be

surrounded on both sides by whitespace, except at the start and end of the string.

* A package dependency specification. Permitted in DEPEND, BDEPEND, RDEPEND, PDEPEND,

IDEPEND.

e A URI, in the form proto://host/path. Permitted in HOMEPAGE and SRC_URI. In EAPIs
listed in table 7.3 as supporting SRC_URI arrows, may optionally be followed by whitespace,
then ->, then whitespace, then a simple filename when in SRC_URI. For SRC_URI behaviour,

see section 7.3.2.
¢ A flat filename. Permitted in SRC_URI.
* A license name (e. g. GPL-2). Permitted in LICENSE.

* A use flag name, optionally preceded by an exclamation mark. Permitted in REQUIRED_USE.

* A simple string. Permitted in PROPERTIES and RESTRICT.

¢ An all-of group, which consists of an open parenthesis, followed by whitespace, followed by
one or more of (a dependency item of any kind followed by whitespace), followed by a close
parenthesis. More formally: all-of ::= >(’ whitespace (item whitespace)+ ’)’.

Permitted in all specification style variables.

* An any-of group, which consists of the string | |, followed by whitespace, followed by an open
parenthesis, followed by whitespace, followed by one or more of (a dependency item of any
kind followed by whitespace), followed by a close parenthesis. More formally: any-of ::=
>| |’ whitespace ’(’ whitespace (item whitespace)+ ’)’. Permitted in DEPEND,

BDEPEND, RDEPEND, PDEPEND, IDEPEND, LICENSE, REQUIRED_USE.

* An exactly-one-of group, which has the same format as the any-of group, but begins with the

string =~ instead. Permitted in REQUIRED_USE.

CHAPTER 8. DEPENDENCIES 38

Table 8.5: EAPIs supporting REQUIRED_USE 77 groups

EAPI Supports REQUIRED_USE 77 groups?

0,1,2,3,4 No
5,6,7,8,9 Yes

Table 8.6: Matching of empty dependency groups in EAPIs

EAPI Empty | | and ~~ groups are matched?
0,1,2,3,4,5,6 Yes
7,8,9 No

* An at-most-one-of group, which has the same format as the any-of group, but begins with
the string 77 instead. Permitted in REQUIRED_USE in EAPIs listed in table 8.5 as supporting
REQUIRED_USE 77 groups.

* A use-conditional group, which consists of an optional exclamation mark, followed by a use
flag name, followed by a question mark, followed by whitespace, followed by an open paren-
thesis, followed by whitespace, followed by one or more of (a dependency item of any kind
followed by whitespace), followed by a close parenthesis. More formally: use-conditional
1:= 21’7 flag-name ’7’ whitespace ’(’ whitespace (item whitespace)+ ’)°.
Permitted in all specification style variables.

In particular, note that whitespace is not optional.

8.2.1 All-of dependency specifications

In an all-of group, all of the child elements must be matched.

8.2.2 USE-conditional dependency specifications

In a use-conditional group, if the associated use flag is enabled (or disabled if it has an exclamation
mark prefix), all of the child elements must be matched.

It is an error for a flag to be used if it is not included in TUSE_EFFECTIVE as described in sec-
tion 11.1.1.

8.2.3 Any-of dependency specifications

Any use-conditional group that is an immediate child of an any-of group, if not enabled (disabled
for an exclamation mark prefixed use flag name), is not considered a member of the any-of group for
match purposes.

In an any-of group, at least one immediate child element must be matched. A blocker is considered
to be matched if its associated package dependency specification is not matched.

In EAPIs specified in table 8.6, an empty any-of group counts as being matched.

8.2.4 Exactly-one-of dependency specifications

Any use-conditional group that is an immediate child of an exactly-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the exactly-
one-of group for match purposes.

In an exactly-one-of group, exactly one immediate child element must be matched.

In EAPIs specified in table 8.6, an empty exactly-one-of group counts as being matched.

[AT-MOST-ONE-OF

’ EMPTY-DEP-GROUPS

CHAPTER 8. DEPENDENCIES 39

Table 8.7: Support for SLOT dependencies and sub-slots in EAPIs

EAPI Supports SLOT dependencies? Supports sub-slots?

0 No No
1,2,3,4 Named only No
5,6,7,8,9 Named and operator Yes

Table 8.8: EAPIs supporting USE dependencies

EAPI Supports USE dependencies?
0,1 No
2,3 2-style
4,5,6,7,8,9 4-style

8.2.5 At-most-one-of dependency specifications

Any use-conditional group that is an immediate child of an at-most-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the at-
most-one-of group for match purposes.

In an at-most-one-of group, at most one immediate child element must be matched.

8.3 Package dependency specifications
A package dependency can be in one of the following base formats. A package manager must warn
or error on non-compliant input.

* A simple category/package name.
* An operator, as described in section 8.3.1, followed immediately by category/package,
followed by a hyphen, followed by a version specification.

In EAPIs shown in table 8.7 as supporting SLOT dependencies, either of the above formats may
additionally be suffixed by a :slot restriction, as described in section 8.3.3. A package manager
must warn or error if slot dependencies are used with an EAPI not supporting SLOT dependencies.

In EAPIs shown in table 8.8 as supporting 2-style or 4-style USE dependencies, a specification may
additionally be suffixed by at most one 2-style or 4-style [use] restriction, as described in sec-
tion 8.3.4. A package manager must warn or error if this feature is used with an EAPI not supporting
use dependencies.

Note: Order is important. The slot restriction must come before use dependencies.

8.3.1 Operators

The following operators are available:

< Strictly less than the specified version.

<= Less than or equal to the specified version.

= Exactly equal to the specified version. Special exception: if the version specified has an asterisk
immediately following it, then only the given number of version components is used for com-
parison, i.e. the asterisk acts as a wildcard for any further components. When an asterisk is
used, the specification must remain valid if the asterisk were removed. (An asterisk used with
any other operator is illegal.)

~ Equal to the specified version when revision parts are ignored.

>= Greater than or equal to the specified version.

USE-DEPS

CHAPTER 8. DEPENDENCIES 40

Table 8.9: Exclamation mark strengths for EAPIs

EAPI ! N

0,1 Unspecified Forbidden
2,3,4,5,6,7,8,9 Weak Strong

> Strictly greater than the specified version.

8.3.2 Block operator

If the specification is prefixed with one or two exclamation marks, the named dependency is a block
rather than a requirement—that is to say, the specified package must not be installed. As an exception,
weak blocks on the package version of the ebuild itself do not count.

There are two strengths of block: weak and strong. A weak block may be ignored by the package
manager, so long as any blocked package will be uninstalled later on. A strong block must not be
ignored. The mapping from one or two exclamation marks to strength is described in table 8.9.

8.3.3 Slot dependencies

A named slot dependency consists of a colon followed by a slot name. A specification with a named
slot dependency matches only if the slot of the matched package is equal to the slot specified. If
the slot of the package to match cannot be determined (e. g. because it is not a supported EAPI, the
match is treated as unsuccessful.

In EAPIs shown in table 8.7 as supporting sub-slots, a slot dependency may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character.

An operator slot dependency consists of a colon followed by one of the following operators:

* Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will not break if the matched package is uninstalled and replaced by a different
matching package in a different slot.

= Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will break unless a matching package with slot and sub-slot equal to the slot and
sub-slot of the best version installed as a build-time (DEPEND) dependency is available.

slot= Indicates that only a specific slot value is acceptable, and otherwise behaves identically to the
= operator. The specified slot must not contain a sub-slot part.

To implement the equals slot operators = and slot=, the package manager will need to store the
slot/sub-slot pair of the best installed version of the matching package. This syntax is only for pack-
age manager use and must not be used by ebuilds. The package manager may do this by inserting
the appropriate slot/sub-slot pair between the colon and equals sign when saving the package’s de-
pendencies. The sub-slot part must not be omitted here (when the SLOT variable omits the sub-slot
part, the package is considered to have an implicit sub-slot which is equal to the regular slot).

Whenever the equals slot operator is used in an enabled dependency group, the dependencies
(DEPEND) must ensure that a matching package is installed at build time. It is invalid to use the
equals slot operator inside PDEPEND or inside any-of dependency specifications.

8.3.4 2-style and 4-style USE dependencies
A 2-style or 4-style use dependency consists of one of the following:
[opt] The flag must be enabled.

[opt=] The flag must be enabled if the flag is enabled for the package with the dependency, or
disabled otherwise.

| BANG-STRENGTH

SLOT-DEPS

SUB-SLOT

[SLOT-OPERATOR-DEPS

CHAPTER 8. DEPENDENCIES 41

[lopt=] The flag must be disabled if the flag is enabled for the package with the dependency, or
enabled otherwise.

[opt?] The flag must be enabled if the flag is enabled for the package with the dependency.
[lopt?] The flag must be disabled if the use flag is disabled for the package with the dependency.
[-opt] The flag must be disabled.

Multiple requirements may be combined using commas, e. g. [first,-second,third?].

When multiple requirements are specified, all must match for a successful match.

In a 4-style use dependency, the flag name may immediately be followed by a default specified by] USE-DEP-DEFAULTS

either (+) or (-). The former indicates that, when applying the use dependency to a package that
does not have the flag in question in IUSE_REFERENCEABLE, the package manager shall behave as if
the flag were present and enabled; the latter, present and disabled.

Unless a 4-style default is specified, it is an error for a use dependency to be applied to an ebuild
which does not have the flag in question in IUSE_REFERENCEABLE.

Note: By extension of the above, a default that could reference an ebuild using an EAPI not support-
ing profile TUSE injections cannot rely upon any particular behaviour for flags that would not have to
be part of IUSE.

It is an error for an ebuild to use a conditional use dependency when that ebuild does not have the
flag in ITUSE_EFFECTIVE.

Chapter 9

Ebuild-defined functions

9.1 List of functions

The following is a list of functions that an ebuild, or eclass, may define, and which will be called by
the package manager as part of the build and/or install process. In all cases the package manager must
provide a default implementation of these functions; unless otherwise stated this must be a no-op. All
functions may assume that they have read access to all system libraries, binaries and configuration
files that are accessible to normal users, as well as write access to the temporary directories specified
by the T, TMPDIR and HOME variables (see section 11.1). Most functions must assume only that they
have additional write access to the package’s working directory (the WORKDIR variable); exceptions
are noted below.

The environment for functions run outside of the build sequence (that is, pkg_config, pkg_info,
pkg_prerm and pkg_postrm) must be the environment used for the build of the package, not the
current configuration.

Ebuilds must not call nor assume the existence of any phase functions.

9.1.1 Initial working directories

Some functions may assume that their initial working directory is set to a particular location; these
are noted below. If no initial working directory is mandated, then for EAPIs listed in table 9.1 as
having an empty directory, it must be set to a dedicated directory that is empty at the start of the
function and may be read-only. For other EAPIs, it may be set to anything. The ebuild must not rely
upon a particular location for it. The ebuild may assume that the initial working directory for any
phase is a trusted location that may only be written to by a privileged user and group.

Some functions are described as having an initial working directory of S with an error or fallback to
WORKDIR. For EAPIs listed in table 9.2 as having the fallback, this means that if S is not a directory
before the start of the phase function, the initial working directory shall be WORKDIR instead. For
EAPIs where it is a conditional error, if S is not a directory before the start of the phase function, it
is a fatal error, unless all of the following conditions are true, in which case the fallback to WORKDIR
is used:

* The A variable contains no items.

* The phase function in question is not in DEFINED_PHASES.

* None of the phase functions unpack, prepare, configure, compile, test or install, if
supported by the EAPI in question and occurring prior to the phase about to be executed, are
in DEFINED_PHASES.

9.1.2 pkg_pretend

The pkg_pretend function is only called for EAPISs listed in table 9.3 as supporting it.

42

| PHASE-FUNCTION-DIR

’ S-WORKDIR-FALLBACK

PKG-PRETEND

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 43

Table 9.1: Initial working directory in pkg_x* phase functions for EAPIs

EAPI Initial working directory?
0,1,2,3,4,5,6,7 Any
8,9 Empty

Table 9.2: EAPIs with S to WORKDIR fallbacks

EAPI Fallback to WORKDIR permitted?

0,1,2,3 Always
4,5,6,7,8,9 Conditional error

Table 9.3: EAPIs supporting pkg_pretend

EAPI Supports pkg_pretend?

0,1,2,3 No
4,5,6,7,8,9 Yes

The pkg_pretend function may be used to carry out sanity checks early on in the install process.
For example, if an ebuild requires a particular kernel configuration, it may perform that check in
pkg_pretend and call eerror and then die with appropriate messages if the requirement is not
met.

pkg_pretend is run separately from the main phase function sequence, and does not participate in
any kind of environment saving. There is no guarantee that any of an ebuild’s dependencies will be
met at this stage, and no guarantee that the system state will not have changed substantially before
the next phase is executed.

pkg_pretend must not write to the filesystem.

9.1.3 pkg_setup

The pkg_setup function sets up the ebuild’s environment for all following functions, before the build
process starts. Further, it checks whether any necessary prerequisites not covered by the package
manager, e. g. that certain kernel configuration options are fulfilled.

pkg_setup must be run with full filesystem permissions, including the ability to add new users
and/or groups to the system.

9.1.4 src_unpack

The src_unpack function extracts all of the package’s sources. In EAPIs lacking src_prepare, it
may also apply patches and set up the package’s build system for further use.

The initial working directory must be WORKDIR, and the default implementation used when the ebuild
lacks the src_unpack function shall behave as in listing 9.1.

Listing 9.1 src_unpack

src_unpack() {
if [[-n ${A} 1]; then
unpack ${A}
fi

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 44

Table 9.4: src_prepare support and behaviour for EAPIs

EAPI Supports src_prepare? Format

0,1 No Not applicable
2,3,4,5 Yes no-op
6,7 Yes 6
8,9 Yes 8
Table 9.5: EAPIs supporting src_configure
EAPI Supports src_configure?
0,1 No
2,3,4,5,6,7,8,9 Yes

9.1.5 src_prepare

The src_prepare function is only called for EAPISs listed in table 9.4 as supporting it. The src_
prepare function can be used for post-unpack source preparation.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.4 as using format 6 or 8, the default implementation used when the ebuild
lacks the src_prepare function shall behave as in listing 9.2 or listing 9.3, respectively.

For other EAPIs supporting src_prepare, the default implementation used when the ebuild lacks
the src_prepare function is a no-op.

Listing 9.2 src_prepare, format 6

src_prepare() {
if [[$(declare -p PATCHES 2>/dev/null) == "declare -a"*]]; then
[[-n ${PATCHES[@]} 1] && eapply "${PATCHES[@]}"
else
[[-n ${PATCHES} 1] && eapply ${PATCHES}
fi
eapply_user

Listing 9.3 src_prepare, format 8

src_prepare() {
if [[${PATCHES@a} == *a*]]; then
[[-n ${PATCHES[@]} 1] && eapply -- "${PATCHES[@]}"
else
[[-n ${PATCHES} 1] && eapply -- ${PATCHES}
fi
eapply_user

9.1.6 src_configure
The src_configure function is only called for EAPIs listed in table 9.5 as supporting it.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

The src_configure function configures the package’s build environment. The default implemen-
tation used when the ebuild lacks the src_configure function shall behave as in listing 9.4.

SRC-PREPARE

[SRC-CONFIGURE

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 45

Table 9.6: src_compile behaviour for EAPIs

EAPI Format
0 0
1 1
2,3,4,5,6,7,8,9 2

Listing 9.4 src_configure

src_configure() {
if [[-x ${ECONF_SOURCE:-.}/configure]]; then
econf
fi

9.1.7 src_compile

The src_compile function configures the package’s build environment in EAPIs lacking src_
configure, and builds the package in all EAPIs.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.6 as using format 0, 1 or 2, the default implementation used when the
ebuild lacks the src_prepare function shall behave as in listing 9.5, listing 9.6 or listing 9.7, re-
spectively.

Listing 9.5 src_compile, format 0

src_compile() {
if [[-x ./configure]]; then

econf

fi

if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"

fi

Listing 9.6 src_compile, format 1

src_compile() {
if [[-x ${ECONF_SOURCE:-.}/configure 1]; then

econf

fi

if [[-f Makefile]] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"

fi

Listing 9.7 src_compile, format 2

src_compile() {
if [[-f Makefile]] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"
fi

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 46

Table 9.7: src_test behaviour for EAPIs

EAPI Supports parallel tests?

0,1,2,3,4 No
5,6,7,8,9 Yes

Table 9.8: src_install behaviour for EAPIs

EAPI Format

0,1,2,3 no-op
4,5 4
6,7,8,9 6

9.1.8 src_test
The src_test function runs unit tests for the newly built but not yet installed package as provided.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

The default implementation used when the ebuild lacks the src_test function must, if tests are
enabled, run emake check if and only if such a target is available, or if not run emake test if and
only if such a target is available. In both cases, if emake returns non-zero the build must be aborted.

For EAPIs listed in table 9.7 as not supporting parallel tests, the emake command must be called] PARALLEL-TESTS

with option -j1.

The src_test function may be disabled by RESTRICT. See section 7.3.6. It may be disabled by
user too, using a PM-specific mechanism.

9.1.9 src_install
The src_install function installs the package’s content to a directory specified in D.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.8 as using format 4 or 6, the default implementation used when the ebuild
lacks the src_prepare function shall behave as in listing 9.8 or listing 9.9, respectively.

For other EAPIs, the default implementation used when the ebuild lacks the src_install function
is a no-op.

Listing 9.8 src_install, format 4
src_install() {
if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake DESTDIR="${D}" install
fi

if ! declare -p DOCS >/dev/null 2>&1; then
local d
for d in READMEx ChangeLog AUTHORS NEWS TODO CHANGES \
THANKS BUGS FAQ CREDITS CHANGELOG; do
[[-s "${d}" 1] && dodoc "${d}"

done

elif [[$(declare -p DOCS) == "declare -a"*]]; then
dodoc "${DOCS[@]}"

else
dodoc ${D0OCS}

fi

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 47

Listing 9.9 src_install, format 6
src_install() {

if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi

einstalldocs

9.1.10 pkg_preinst

The pkg_preinst function performs any special tasks that are required immediately before merging
the package to the live filesystem. It must not write outside of the directories specified by the ROOT
and D variables.

pkg_preinst must be run with full access to all files and directories below that specified by the
ROOT and D variables.

9.1.11 pkg_postinst

The pkg_postinst function performs any special tasks that are required immediately after merging
the package to the live filesystem. It must not write outside of the directory specified in the ROOT
variable.

pkg_postinst, like, pkg_preinst, must be run with full access to all files and directories below
that specified by the ROOT variable.

9.1.12 pkg_prerm

The pkg_prerm function performs any special tasks that are required immediately before unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
variable.

pkg_prerm must be run with full access to all files and directories below that specified by the ROOT
variable.

9.1.13 pkg_postrm

The pkg_postrm function performs any special tasks that are required immediately after unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
variable.

pkg_postrm must be run with full access to all files and directories below that specified by the ROOT
variable.

9.1.14 pkg_config

The pkg_config function performs any custom steps required to configure a package after it has
been fully installed. It is the only ebuild function which may be interactive and prompt for user
input.

pkg_config must be run with full access to all files and directories inside of ROOT.

9.1.15 pkg_info

The pkg_info function may be called by the package manager when displaying information about an
installed package. In EAPIs listed in table 9.9 as supporting pkg_info on non-installed packages,
it may also be called by the package manager when displaying information about a non-installed
package. In this case, ebuild authors should note that dependencies may not be installed.

pkg_info must not write to the filesystem.

PKG-INFO

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 48

Table 9.9: EAPIs supporting pkg_info on non-installed packages

EAPI Supports pkg_info on non-installed packages?

0,1,2,3 No
4,5,6,7,8,9 Yes

Table 9.10: EAPIs supporting default_ phase functions

EAPI Supports default_ functions in phases

None

Mo
W -

pkg_nofetch, src_unpack, src_prepare, src_configure,
src_compile, src_test

4,5,6,7,8,9 pkg_nofetch, src_unpack, src_prepare, src_configure,
src_compile, src_test, src_install

9.1.16 pkg_nofetch

The pkg_nofetch function is run when the fetch phase of an fetch-restricted ebuild is run, and the
relevant source files are not available. It should direct the user to download all relevant source files
from their respective locations, with notes concerning licensing if applicable.

pkg_nofetch must require no write access to any part of the filesystem.

9.1.17 Default phase functions

In EAPIs listed in table 9.10 as supporting default_ phase functions, a function named default_
<phase-function>) that behaves as the default implementation for that EAPI shall be defined when
executing any ebuild phase function listed in the table. Ebuilds must not call these functions except
when in the phase in question.

9.2 Call order

The call order for installing a package is:

* pkg_pretend (only for EAPIs listed in table 9.3), which is called outside of the normal call
order process.

* pkg_setup

* src_unpack

» src_prepare (only for EAPIs listed in table 9.4)

» src_configure (only for EAPISs listed in table 9.5)

* src_compile

* src_test (except if RESTRICT=test or disabled by user)

e src_install

* pkg_preinst

* pkg_postinst

The call order for uninstalling a package is:

¢ pkg_prerm
¢ pkg_postrm

The call order for upgrading, downgrading or reinstalling a package is:

* pkg_pretend (only for EAPIs listed in table 9.3), which is called outside of the normal call
order process.

* pkg_setup

* src_unpack

» src_prepare (only for EAPIs listed in table 9.4)

| DEFAULT-PHASE-FUNCS

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 49

* src_configure (only for EAPIs listed in table 9.5)
* src_compile

e src_test (except if RESTRICT=test)

* src_install

* pkg_preinst

* pkg_prerm for the package being replaced

* pkg_postrm for the package being replaced

¢ pkg_postinst

Note: When up- or downgrading a package in EAPI O or 1, the last four phase functions can al-
ternatively be called in the order pkg_preinst, pkg_postinst, pkg_prerm, pkg_postrm. This
behaviour is deprecated.

The pkg_config, pkg_info and pkg_nofetch functions are not called in a normal sequence. The
pkg_pretend function is called some unspecified time before a (possibly hypothetical) normal se-
quence.

For installing binary packages, the src phases are not called.

When building binary packages that are not to be installed locally, the pkg_preinst and pkg_
postinst functions are not called.

Chapter 10

Eclasses

Eclasses serve to store common code that is used by more than one ebuild, which greatly aids main-
tainability and reduces the tree size. However, due to metadata cache issues, care must be taken in
their use. In format they are similar to an ebuild, and indeed are sourced as part of any ebuild using
them. The interpreter is therefore the same, and the same requirements for being parseable hold.

Eclasses must be located in the eclass directory in the top level of the repository—see section 4.6.
Each eclass is a single file named <name>.eclass, where <name> is the name of this eclass, used
by inherit and EXPORT_FUNCTIONS among other places. <name> must be a valid eclass name, as
per section 3.1.6.

10.1 The inherit command

An ebuild wishing to make use of an eclass does so by using the inherit command in global scope.
This will cause the eclass to be sourced as part of the ebuild—any function or variable definitions
in the eclass will appear as part of the ebuild, with exceptions for certain metadata variables, as
described below.

The inherit command takes one or more parameters, which must be the names of eclasses (exclud-
ing the . eclass suffix and the path). For each parameter, in order, the named eclass is sourced.

Eclasses may end up being sourced multiple times.
The inherit command must also ensure that:

» The ECLASS variable is set to the name of the current eclass, when sourcing that eclass.
* Once all inheriting has been done, the INHERITED metadata variable contains the name of
every eclass used, separated by whitespace.

10.2 Eclass-defined metadata keys

The IUSE, REQUIRED_USE, DEPEND, BDEPEND, RDEPEND, PDEPEND and IDEPEND variables are han-
dled specially when set by an eclass. They must be accumulated across eclasses, appending the
value set by each eclass to the resulting value after the previous one is loaded. For EAPIs listed in
table 10.1 as accumulating PROPERTIES and RESTRICT, the same is true for these variables. Then
the eclass-defined value is appended to that defined by the ebuild. In the case of RDEPEND, this is
done after the implicit RDEPEND rules in section 7.3.7 are applied.

10.3 EXPORT_FUNCTIONS

There is one command available in the eclass environment that is neither available nor meaningful in
ebuilds—EXPORT_FUNCTIONS. This can be used to alias ebuild phase functions from the eclass so

50

[ACCUMULATE-VARS

CHAPTER 10. ECLASSES 51

Table 10.1: EAPIs accumulating PROPERTIES and RESTRICT across eclasses

EAPI Accumulates PROPERTIES? Accumulates RESTRICT?
0,1,2,3,4,5,6,7 No No
8,9 Yes Yes

Listing 10.1 EXPORT_FUNCTIONS example: foo.eclass

foo_src_compile()

{
econf --enable-gerbil \
$(use_enable fnord)
emake gerbil || die "Couldn’t make a gerbil"
emake || die "emake failed"
}

EXPORT_FUNCTIONS src_compile

that an ebuild inherits a default definition whilst retaining the ability to override and call the eclass-
defined version from it. The use of it is best illustrated by an example; this is given in listing 10.1
and is a snippet from a hypothetical foo.eclass.

This example defines an eclass src_compile function and uses EXPORT_FUNCTIONS to alias it.
Then any ebuild that inherits foo.eclass will have a default src_compile defined, but should the
author wish to override it he can access the function in foo.eclass by calling foo_src_compile.

EXPORT_FUNCTIONS must only be used on ebuild phase functions. The function that is aliased must
be named <eclass>_<phase-function>, where <eclass> is the name of the eclass.

If EXPORT_FUNCTIONS is called multiple times for the same phase function, the last call takes prece-
dence. Eclasses may not rely upon any particular behaviour if they inherit another eclass after calling
EXPORT_FUNCTIONS.

Chapter 11

The ebuild environment

11.1 Defined variables

The package manager must define the following variables. Not all variables are universally mean-
ingful; variables that are not meaningful in a given phase or in global scope may be unset or set to
any value. Ebuilds must not attempt to modify any of these variables, unless otherwise specified.

Because of their special meanings, these variables may not be preserved consistently across all phases
as would normally happen due to environment saving (see section 11.2). For example, EBUILD_
PHASE is different for every phase, and ROOT may have changed between the various different pkg_x*
phases. Ebuilds must recalculate any variable they derive from an inconsistent variable.

These variables are either exported to the environment or kept as unexported shell variables, as
specified for EAPIs in table 11.1; exceptions are TMPDIR and HOME which are always exported. In
EAPIs where variables are not exported, the package manager must pass those that are required by
ebuild-specific external commands (see section 12.3) in an implementation-defined manner.

Variables listed in section 5.3.2 as having specific meanings or special handling, and that are set in the
active profiles’ make .defaults files, obey the same export rules specified for EAPIs in table 11.1.
To clarify, this behaviour is governed by the EAPI of the ebuild, not that of the profile. Except where
otherwise noted, all other variables set in the active profiles’ make . defaults files must be exported
to the environment.

Table 11.1: EAPIs with variables exported to the environment

EAPI Variables exported?
0,1,2,3,4,5,6,7,8 Yes
9 No

52

EXPORT-VARS

53

*2d0ds TeqO[3 UT A1030a11p 3y $SAOOE JOU Jsnw SPIINQH dFexoed Areurq v woiy Surfreisur usym judsard ALressaoau JON

*STY) punole spIom snyy jsnw syduos amSyuod yons Jurpres sprmqgs ‘oSexyoed qTTER 9y} puy 0} S[qRLIEA
sty asn s3d1Ios NFYuoo M e dduwexa 104 I Suntoddns S[JVH Ay Ul 3T $19s JoFeurwr a5exoed ay) JeY) SWNSSE [[1IS IS SP[INGD “TIOAIMOH PRJeo2Idap paIopIsuod A[[eIouds ST A[qELIeA SIYL .
‘(¥4 uondas 2as) pajepdn usaq sey agesoed € J1 oFueyd Ae] |

CHAPTER 11. THE EBUILD ENVIRONMENT

2doos [eqo[3

"PauTeIuOD 9q P[NOYS BIBP P[INg [[€ 19YM ‘A10301Ip SUTYIOM S,p[Inga ay) 03 yred [[ng 9y, SOX ‘¢ 70IS YIATY0M
2doos 1eqo[3
‘PoIO}S 918 J[QBLIBA ¥ Y} UL SA[Y 9} YOIy UT A103011p oy} 0} yjed [[ng oy, SOX ‘¥70IS YIQLSIA
*A103021Ip JUISIX-uou © 03 syutod YT ASATIL 1oy uorenis ayy Joj paredard oq
1snwt p[Iinge ue uay) uonsanb ur aeyoed oy 10y so[y 1oddns ou sopiaoid A1ojsodar v
J1 4SIXQ J0u ABW IO ABRJA] "€'{ UONDAS 99§ "d[qe[reAe are (soyojed 10 sofy 11oddns [[ews 2doos 1eqo[3
I0J pasn) A1030911p s9[Y S,o8eyoed oy} WOIJ SOy Y} 219YM A1030211p ' 0) ped [[nJ oy, SOX ‘¥ 70IS YIQSATIIA
vy Sunzoddns se
11 91qe) Ul pASI[S|JVH 10J ATUQ "9[qeLIeA eIepejow p[inga TYA~DYS AU} JO JUSWI[S
[OB9 JO SOWBU JSBQ) WOIJ PAJR[NO[ED SI aN[eA Y], "S[BUONIPUOD FS[) JO 9sneddq y ul yojegou 3xd
Pa[qesIp a1e Jey) Aue Surpnpour ‘eSeyoed oY) 10J S[qe[IEAR 9q P[NOD 1By} SI[Y 90IN0S [[V SOX ‘¢ 0IS VY
"9[qelLIeA BIRp
-BJOW P[INGd TYN~DYUS OY} JO JUSWS[YOS JO SOWIRU 9skq 9} WOIJ PAJB[NO[eD SI anfea
U, "S[RUONIPUOD FS () JO 9SNBI2q PA[qeSIP Ik ey} AUB 9pPN[OUI JOU SA0(] "THN~DYUS JO
juduodwod payojew e ul sreadde 3sIy WL oY) YoIym Ul JI9pIo Y} ul pue ‘9oedsajiym Jur yogegou~3yd
-[ren 1o Surpea[ou YPm pajeredas aoedsayym ‘oFexoed ay) 10J 9[qe[IRAR SO[I 90INO0S [[V SO ‘x70Is v
TI-HLT 0L I0HLT 0" L drdwexa 10J ‘(Aue JT) UOISIASI PUR UOISISA 95eyorq SOX v UAd
"SJSTXd QUOU JI 0. JO ‘UOISIAI 95eord SOX v ud
‘$,7°0" L o[dwexo 10 "UOISIAQI OU [}IM ‘UOISIOA a3eyoed SOX v Ad
‘sxoq1po-dde ojdwexs 10J ‘A10303e0 S 98eyord oy, 1ON nv A40DALYD
‘wra oidwrex 10j ‘oureu ageyoed [ON nv Nd
"TI-PLT 0 L-wTA o[dwexa 10J ‘(AUe JT) UOISIASI pUB ‘UOISISA ‘Qured ageyoeq [ON nv ad
HLT 0" L-wTa ‘O[dwexs 10 11ed UOISIASI AU} INOYIIM ‘UOISIOA pUE JuIeU ageyoed 1ON v d
uondrsaq £IUI)SISU0)) ul [839] dqerIeA

sa|qeLeA pauya(711 dIquL

<
v

CHAPTER 11. THE EBUILD ENVIRONMENT

“Juowaoe[dar ay) pue [[eISUT 9y} IO SANTeA

JUSIAIP SABY ISNUI S[qELIEA SIY) ‘a3exoed T Sulf[eIsulal USYA\ ‘[[BISUIUN PUE [[E)SUI Usam]dq JOu Inq ‘saseyd [[eisurun o [[EISul JO 20uanbas pajosuuod S[3UIS B $S0108 PaAIdsdld pue JuaIsIsuo)
"aNadaqar Sunioddns se 48 d[qel ur payst| S[JVH 10§ AJuo wxx~3xd pue asut«~3xd ur esey,

"o3eyoed Areurq e woiy SureIsur uoym judsald A[LIessaddu JoN,

‘PIINg@ 93 Aq asn 10J A1030a11p Arerodura) e o3 yyed [[ny ayJ, oAITenred nv i
mEHuwom|me
‘wxexd~8yd
‘asutasod~8xd
10044 Suntoddns se ¢'11 9[qe ur paisi[SJvH 10J A[uQ ‘xyoid 19s]jo 9[q ‘gsutead 8xd
-eoridde Aue sopnyour sIyJ, ‘S[00} p[Ing 2[qeIndaxa A[[eo1dA) ‘GNIJAQI pue ANAJAAd - dnaes™3xd
AKq pagsnes serouspuadep pling Sururejuod A103091p jool y) 03 yied anjosqe YT, ON ‘¢ 70IS 100yd
*1004SASH Sunioddns se [T 9[qe1 ul past] S[dVH 10} A[UQ “¢’Y 2[qe1 Aq paurux ydnaes™3xd
-1919p se ‘anfea xyaid o[qeordde pue yred LOOYUSAS Y1 JO UONBUIILIUOD Y} SUIBIUOD) ON ‘x70Is I00YSASH
*100YSAS Sunzoddns se ¢ 11 9[qe} ur paisi| SIdVH 10 A[UQ "aNIdAd ydnaes~8xd
Kq pogspes sorouapuadop pling Jururejuod A1o3o1p jool Yl o) yed ainjosqe Ay, ON ‘7018 I00YSAS
"9 11 2[qe) ur pasI] se Juapuadap [vH St yse[s Surfren e jo souasaid oy, "100Yd Sur
-y10ddns se G 11 9[qe) ur pasI S[JVH I0J A[UQ 9[qeLIeA XI ITYdH Y} OS[E 99§ 9ouaru
-QAU0D 10 ‘SO[qBLIBA XTI ATHJH Pue LO0Y oY ul syjed oY) JO UOTJBUILOUOD) SUIRIUOD) ON x~3xd 100Yd
Q' 11 2[qe} ur pajsi se yJuapuadap [dvH St yse[s Surfren e jo douasaxd
QU "way) [[BD JOU SN SP[INga 0S ‘QUIYOLW P[INg Y} UO J[qeINOAX? 29 JOU [[IM LO0YH
JO 9pISUI SALIBUIq JUSWUOIIAUS SUT[IdU00-$SOIO © UT JeY) ST 9)0U JO OS[Y "IL00Y UI USAIS
KI010911p QYY) JO OPISINO SIA[Y AUB YONO} JOU ISNW $SOIE WAISASI[Y [[NF PIM UNI YOIYM
saseyq ‘padiow oq 03 st a3eyord oY) yorym 0jur A103011p 3001 3y} 03 yied ainjosqe ay], ON x~8xd 1004
“4IAsSy10d Sunioddns se 4 [o[qe
ur pAIs S[dVH J0f A[uQ “A1030a11p sse[oo s, A10jsodar 1disewr ayy o3 yied [y Sy, ON *"DIS YIASSY10d
"41a140d Suntoddns se [9[q
-8} Ur paIsI] S|dvH 10} A[uQ "A1030011p aseq s,A1031sodar 1o)sewr o) 01 yyed [y oy, ON *"DIS YIa1¥od
‘Ajdde
S9[qeLIBA [RQO[S I0J 7' UOIDAS JO SUOTIOLIISAI Y} USY) ‘pInga ue jo adods [eqofs ay)
ur paugisse st g J] 'SP[INQd Aq poyrpowr oq KB\ {d}$/{¥ICHYOM}$ 01 SINeJ_q "2
TTeasur oas ‘eTtdwoo~21s Aq pasn ‘A10joax1p prng Arerodwoy ayy 03 yred [[ny dyJ, SOX *~DIS S
uondrsaq {IUISISUO)) ul [e39] d[qerIes

d1dsSsvIod
d1d.Ld0d

55

CHAPTER 11. THE EBUILD ENVIRONMENT

“S[re3op 10J
['T° 11 Uonoas 99§ "prIingd SIy) JoJ seg gS 2ANIE [[B JO ISI[pAIWI[op-aoedsaiym v
"JUSUIUOIIAUS P[ING? 9} WOIJ 9[qISSOIRUL

9[qerrea Temydoouod e se paurejar st SIy ‘S[IVH IOYI0 (e U] "TAYLISAASNI Sunioddns
Se 41 9[qe} Ul paisy] SIJVH 10J A[uQ ‘SSUIY) S[[EISUI SUTOP AIYM UOTJBIO[Y} S[0IU0D)
“JUSWIUOIIAUD P[ING A} WOIJ 3[qISSOJeUL d[qeLiea [emdoouod e se

PauIeIaI SI STy} ‘S|dVH IoUI0 [[€ U] "HAULISAQ Sunioddns se 4[] 9[qe} ur palsi] SIdvd
10J ATuQ "sSuly} [[eISUI UTQSOP PUR ‘OWOP ‘QITOP ‘UTOP 1Y UOTIBIO[Y} S[ONUO0))
‘811 2198l

ur paist] se juspuadop [dVH S! yse[s surfren e Jo aouasaid oy, "TTeISUT DIS URY)
19yj0 saseyd x~2Is Ul A10JOaIIp Ay} Sseooe 0} jJdwape jou jsnw sprnqy qd Suniod
-dns se ¢'[1 9[qe3 ur passi| SIdVH 10} A[UQ "9[qelLIeA XTAAYJT 9Y) OS[E 995 "90oudIu
-QAUO0D JOJ ‘S9[qeLIeA XTI JFHJT pue g 9y ur syjed oy Jo UOIIRUSIEBOUOD I} SUIRIUO))
"Q°T1 9[qe1 ur pajst] se Juapuadap VA St yse[s Surren e jo oouasaid

U], "peSiow 9q 0} Inoqe a3eyoed oY) Jo K1030011p 93w oY) 03 yied [[nJ 9y} sureuo))
"Q 11 9[qe) ur pasI] se Juapuadap [VH ST yse[s Surren e jo oouesaid ayJ, ‘TTRISUT
~oxs uey) 100 soseyd x72Is Ul AI10J02IIp Oy} SS0oe 0) Jduwroye jou jsnw SpIngg
‘pa[reIsul 9q pinoys 23exoed ay) yorym ojur A1030211p a3ewt ayj 0} Yred [[ng oy surejuo))
"XI494dd Sunioddns se ¢'[| 9[qe) Ul pASI] S[JVH 10§ A[UQ "¢""[] UONIIS Os[e

99§ "100Y 0} UDe ‘XTI JdYdd USAIS oy} 10 I[Inq st oSexoed e ‘sanrmn Sunsrxa ay) Sursn
a1oym pounzoyiad st prnq xya1d-ssoId B JUaWUOIIAUS SUI[ed Y} Ul J3S ST anjeA Ur-}jing
U} uey} anfea XIJTUdH JUSISHIP B UaUYA\ IoSeurw o3eyoed ay) Jo uone[eisur suLnp
198 sem Jey) X1Jo1d-1as]jo ur-1[Inqg Ay} 03 SINeJop XTAAUJHA ‘JUSWUOIIAUS JUI[[ed Y} Ul
195 JoU SI YT ATHdH USUYAy "uomne[[eIsul jJosgo ue jo yyed xgoid-josjjo pasieuriou ayJ,
“JUSWIUOIIAUD 31

0] payiodxa sAemye ST GWOH A101091Ip WOy Y} AJIpoul 10 peal Aew Jey) p[Inga ay) £q
payoaur sweioid Aue £q asn 10j A1030a11p Krerodwo) ayerrdoidde ue 0y yyed [[ny oy,
“JUSWIUOIIAUL I} 0} pajrodxa

skempe ST YIAdWI "9AOQe I 99s ¢A[JO2IIp SP[INGd AQ Pasn 2q Jou Isnjy p[inge ue Aq
pajreo suonesrjdde Aue 10j ‘A1030011p ATRIodUIo) 9[qESn B JO UONBIO[Y} 0} 39S 99 IS

"soseyd x oIS Y) Ul pey I JeY) AN[EA JWES OU} OABY AJLIESSIOU JoU B[,

SOX

ON

ON

SIS

(ON

SOX

SOX

oAIrenred

oAlrenTed

v

1Ie3SUT oIS

TTe3SUT 0IS

qsurexd 3yd
‘x0Is

qsutexd - 3yd

*x OIS

v

v

v

asn

JIYLLSHASNI

JIYLLSAd

ai

(ponunuod) g

XTd39d4d

AW0H

YIAdWL

uondrsa(q

{IUI)SISU0))

ul [e39]

dqeries

HHILLSHASNI

HHIYLLSHd

56

CHAPTER 11. THE EBUILD ENVIRONMENT

"NOISYAA™ A4~ QEDY1daY Sunioddns se ¢ | o[qe) ut paisi| S|dvH 10§ A[uQ "¢'['[1 uon
-09s 99§ "9sImIaylo JuLns Aydwe ue Jo ‘[[eisur ue jo Jed se pa[[eIsuIun Juraq e M JI
‘sn 3uroepdaz st 3ey) (pay1oads J1 ‘uorsiaal Jurpnjour) a3exoed sIy) JO UOISIOA 9[3UIS Y],
"SNOISYIA DNIDVIdAY

Sunzoddns se ¢'[1 9[qe) ur paIsy S[IVH J0J A[UOQ ‘TeS9[SI d[qelIeA U} UdIym ul
soseyd oy 10 A[reroadse ‘g '] UOIOS 93§ °[[BISUT SIY} JO I[NSAI B SB (USPLIMIIAO
Io paqreisurun) paoderder Sureq are jey) ‘eoedsayym Surfren 10 SuIpes] OU YIIM pIjeIe
-das aoedsayym ‘(payroads J1 ‘uorsiaal Surpnpour) aeyoed SIY) JO SUOISIDA [[B JO ISI[V
"IdAL"IDYAN Suntoddns se ¢ 11 9[qe1

ut paIsI| S[dvH 10J A[uQ 1 Surreisur Jnoym o3eyoed Areurq e Suipping j1 ATuopTInqg
pue ‘o3eyoed Areurq e 3urfesur j1 £xeutq ‘90Inos woij ageyoed e Jurfeisur pue Sur
-pIIng J1 ©2INOS :2IB San[eA 9[qIssOd ‘podiow 3uraq si eyl a3eyoed jo odAy ayf,
*AY Sunzoddns se 4711 9[qel ut paisi| SIdVA

10J A[uQ splinge Aq payipowr 2q Ae]A -Jud[eAmba 10 puewwod i- sureun Ay Aq
POUINIAI SB ‘PAINoaXd JSIY Sem P[INGd Y W1 Y] I8 [SUIY JUIUUNI Y JO UOISIAA YT,
"ONNA~ISYHA ™ q1Ingd Sunioddns se ¢ [1 [qes ut pasi| s|d v 10§ A[uQ "sesodmd (vO
10 eyepelawl ‘3 "9) I9YJ0 I0J PadInos Suraq SI P[ING Y} Uaym payroadsun ST INOTABYRY
‘Jo3euew a3eyoed oyl AQ poIndaxa sem jeyl uonounj prnge [oad] doj ay) 01 3urpiod
-oe pusiexd~3yd ‘oyur~8yd ‘wxasod8yd ‘wread~8yd ‘asurasod~8yd ‘asutrexd
~8yd ‘TTeasur oas ‘3sea”oas ‘errdwoo oIs ‘eandtJuodo~oxs ‘erxedesxd oas
“poedun~oas ‘yogegou 8yd ‘dnjes~38yd ‘Sryuoo~3xd sonea oy} jo suo soye],
‘sasodand (v Q)

10 eyepejawl ‘3 "9) IOYJ0 0§ PAdINos Jureq SI P[ING Y} UaYM payroadsun ST INOTABYRY
‘Jo3euew a3eyoed oyl Aq peIndaxa sem jeyl uonounj prnge [oad] doj ayy 01 3urpiod
-oe pusleid ‘oyut ‘wrisod ‘wread ‘asurisod ‘gsutead ‘TTelSUT ‘13S0 ‘@TTdwWod
‘ean3tyuoo ‘exedsad ‘yoedun ‘yogegou ‘dnies ‘STFuod sonea ay) Jo AUO SOYB],

SOX

SOX

ON

SOX

ON

oN

wrqsod~3yd
‘wxexd~3yd

(dnaes~3yd
‘pusyoxd~8xd)
asutasod~8xd

‘qasutexd~8yd

*IMM&

v

*~8yd ‘x"oaxs

*~83d ‘x"oa1s

NOISYIA™ A9 qIDV'IdHY

SNOISYIA DNIDVIdHY

IdAL IDYAN

v

JONNA ASYHd a1INdd

dSVHd a1Ingd

uondrsa(q

{IUI)SISU0))

ul [e39]

dqeries

HdAL-HOYdIN

(o]

ONNA-dSVHd-dT1INgd

CHAPTER 11. THE EBUILD ENVIRONMENT 57

Table 11.3: EAPIs supporting various added env variables

EAPI MERGE_ REPLACING_ REPLACED_ EBUILD_ SYSROOT? BROOT?
TYPE? VERSIONS? BY_VERSION? PHASE_FUNC?
0,1,2,3 No No No No No No
4 Yes Yes Yes No No No
5,6 Yes Yes Yes Yes No No
7,8,9 Yes Yes Yes Yes Yes Yes

Table 11.4: EAPIs supporting various removed env variables

EAPI AA? KV? PORTDIR? ECLASSDIR? DESTTREE? INSDESTTREE?

0,1,2,3 Yes Yes Yes Yes Yes Yes
4,5,6 No No Yes Yes Yes Yes
7,8,9 No No No No No No

CHOST, CBUILD and CTARGET, if not set by profiles, must contain either an appropriate machine tuple
(the definition of appropriate is beyond the scope of this specification) or be unset.

PATH must be initialized by the package manager to a “usable” default. The exact value here is left
up to interpretation, but it should include the equivalent “sbin” and “bin” and any package manager
specific directories.

GZIP, BZIP, BZIP2, CDPATH, GREP_OPTIONS, GREP_COLOR and GLOBIGNORE must not be set. In
addition, any variable whose name appears in the ENV_UNSET variable must be unset, for EAPIs
listed in table 5.7 as supporting ENV_UNSET.

The package manager must ensure that the LC_CTYPE and LC_COLLATE locale categories are equiva-
lent to the POSIX locale, as far as characters in the ASCII range (U+0000 to U+007F) are concerned.
Only for EAPISs listed in such a manner in table 11.6.

11.1.1 USE and IUSE handling

This section discusses the handling of four variables:
IUSE is the variable calculated from the IUSE values defined in ebuilds and eclasses.

IUSE_REFERENCEABLE is a variable calculated from IUSE and a variety of other sources de-
scribed below. It is purely a conceptual variable; it is inaccessible from the ebuild environment.
Values in ITUSE_REFERENCEABLE may legally be used in queries from other packages about an
ebuild’s state (for example, for use dependencies).

IUSE_EFFECTIVE is another conceptual, inaccessible variable. Values in TUSE_EFFECTIVE are
those which an ebuild may legally use in queries about itself (for example, for the use function,
and for use in dependency specification conditional blocks).

USE is a variable calculated by the package manager and exported to the ebuild environment.

In all cases, the values of ITUSE_REFERENCEABLE and IUSE_EFFECTIVE are undefined during meta-
data generation.

Table 11.5: EAPIs supporting offset-prefix env variables

EAPI EPREFIX? EROOT? ED? ESYSROOT?

0,1,2 No No No No
3,4,5,6 Yes Yes Yes No
7,8,9 Yes Yes Yes Yes

ENV-UNSET

[LOCALE-SETTINGS |

CHAPTER 11. THE EBUILD ENVIRONMENT 58

Table 11.6: Locale settings for EAPIs

EAPI Sane LC_CTYPE and LC_COLLATE?
0,1,2,3,4,5 Undefined
6,7,8,9 Yes

For EAPIs listed in table 5.6 as not supporting profile defined IUSE injection, IUSE_REFERENCEABLE
is equal to the calculated IUSE value, and IUSE_EFFECTIVE contains the following values:

 All values in the calculated IUSE value.

* All possible values for the ARCH variable.

* All legal use flag names whose name starts with the lower-case equivalent of any value in the
profile USE_EXPAND variable followed by an underscore.

For EAPIs listed in table 5.6 as supporting profile defined IUSE injection, IUSE_REFERENCEABLE
and IUSE_EFFECTIVE are equal and contain the following values:

 All values in the calculated IUSE value.

 All values in the profile IUSE_IMPLICIT variable.

¢ All values in the profile variable named USE_EXPAND_VALUES_${v}, where ${v} is any value
in the intersection of the profile USE_EXPAND_UNPREFIXED and USE_EXPAND_IMPLICIT vari-
ables.

* All values for ${lower_v}_${x}, where ${x} is all values in the profile variable named USE_
EXPAND_VALUES_${v}, where ${v} is any value in the intersection of the profile USE_EXPAND
and USE_EXPAND_IMPLICIT variables and ${lower_v} is the lower-case equivalent of ${v}.

The USE variable is set by the package manager. For each value in IUSE_EFFECTIVE, USE shall
contain that value if the flag is to be enabled for the ebuild in question, and shall not contain that
value if it is to be disabled. In EAPIs listed in table 5.6 as not supporting profile defined IUSE
injection, USE may contain other flag names that are not relevant for the ebuild.

For EAPIs listed in table 5.6 as supporting profile defined IUSE injection, the variables named in
USE_EXPAND and USE_EXPAND_UNPREFIXED shall have their profile-provided values reduced to con-
tain only those values that are present in IUSE_EFFECTIVE.

For EAPIs listed in table 5.6 as supporting profile defined IUSE injection, the package manager must
save the calculated value of TUSE_EFFECTIVE when installing a package. Details are beyond the
scope of this specification.

11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION

In EAPIs listed in table 11.3 as supporting it, the REPLACING_VERSIONS variable shall be defined in
pkg_preinst and pkg_postinst. In addition, it may be defined in pkg_pretend and pkg_setup,
although ebuild authors should take care to handle binary package creation and installation correctly
when using it in these phases.

REPLACING_VERSIONS is a list, not a single optional value, to handle pathological cases such as
installing foo-2:2 to replace foo-2:1 and foo-3:2.

In EAPIs listed in table 11.3 as supporting it, the REPLACED_BY_VERSION variable shall be defined
in pkg_prerm and pkg_postrm. It shall contain at most one value.

11.1.3 Offset-prefix variables

Table 11.7 lists the EAPIs which support offset-prefix installations. This support was initially added
in EAPI 3, in the form of three extra variables. Two of these, EROOT and ED, are convenience
variables using the variable EPREFIX. In EAPIs that do not support an offset-prefix, the installa-
tion offset is hardwired to /usr. In offset-prefix supporting EAPIs the installation offset is set as
${EPREFIX}/usr and hence can be adjusted using the variable EPREFIX. Note that the behaviour of

’ PROFILE-IUSE-INJECT

’ REPLACE-VERSION-VARS

’ OFFSET-PREFIX-VARS

CHAPTER 11. THE EBUILD ENVIRONMENT 59

Table 11.7: EAPIs supporting offset-prefix

EAPI Supports offset-prefix?
0,1,2 No
3,4,5,6,7,8,9 Yes

Table 11.8: Variables that always or never end with a trailing slash

EAPI Ends with a trailing slash?
ROOT, EROOT D, ED
0,1,2,3,4,5,6 always always
7,8,9 never never

offset-prefix aware and agnostic is the same when EPREFIX is set to the empty string in offset-prefix
aware EAPIs. The latter do have the variables ED and EROOT properly set, though.

11.1.4 Path variables and trailing slash

Unless specified otherwise, the paths provided through package manager variables do not end with
a trailing slash. Consequently, the system root directory will be represented by the empty string. A
few exceptions to this rule are listed in table 11.8 along with applicable EAPIs.

For EAPIs where those variables are defined to always end with a trailing slash, the package manager
guarantees that a trailing slash will always be appended to the path in question. If the path specifies
the system root directory, it will consist of a single slash (/).

For EAPIs where those variables are defined to never end with a trailing slash, the package manager] TRAILING-SLASH

guarantees that a trailing slash will never be present. If the path specifies the system root directory,
it will be empty.

11.2 The state of variables between functions

Exported and default scope variables are saved between functions. A non-local variable set in a
function earlier in the call sequence must have its value preserved for later functions, including
functions executed as part of a later uninstall.

Note: pkg_pretend is not part of the normal call sequence, and does not take part in environment
saving.

Variables that were exported must remain exported in later functions; variables with default visibility
may retain default visibility or be exported. Variables with special meanings to the package manager
are excluded from this rule.

Global variables must only contain invariant values (see section 7.1). If a global variable’s value is
invariant, it may have the value that would be generated at any given point in the build sequence.

This is demonstrated by code listing 11.1.

11.3 The state of the system between functions

For the sake of this section:

e Variancy is any package manager action that modifies either ROOT or / in any way that isn’t
merely a simple addition of something that doesn’t alter other packages. This includes any
non-default call to any pkg phase function except pkg_setup, a merge of any package or an
unmerge of any package.

* As an exception, changes to DISTDIR do not count as variancy.

CHAPTER 11. THE EBUILD ENVIRONMENT

60

Listing 11.1 Environment state between functions

GLOBAL_VARIABLE="a"

src_compile()

{
GLOBAL_VARIABLE="b"
DEFAULT_VARIABLE="c"
export EXPORTED_VARIABLE="4"
local LOCAL_VARIABLE="e"
}
src_install(){
[[${GLOBAL_VARIABLE} == "a"]] \
Il [[${GLOBAL_VARIABLE} == "b" 11 \
|| die "broken env saving for globals"
[[${DEFAULT_VARIABLE} == "c" 1] \
|| die "broken env saving for default"
[[${EXPORTED_VARIABLE} == "d" 1] \
|| die "broken env saving for exported"
[[$(printenv EXPORTED_VARIABLE) == "d" 1] \
|| die "broken env saving for exported"
([-z ${LOCAL_VARIABLE} 1] \
|| die "broken env saving for locals"

* The pkg_setup function may be assumed not to introduce variancy. Thus, ebuilds must not

perform variant actions in this phase.

The following exclusivity and invariancy requirements are mandated:

No variancy shall be introduced at any point between a package’s pkg_setup being started up
to the point that that package is merged, except for any variancy introduced by that package.
There must be no variancy between a package’s pkg_setup and a package’s pkg_postinst,
except for any variancy introduced by that package.

Any non-default pkg phase function must be run exclusively.

Each phase function must be called at most once during the build process for any given pack-

age.

Chapter 12

Available commands

This chapter documents the commands available to an ebuild. Unless otherwise specified, they may
be aliases, shell functions, or executables in the ebuild’s PATH.

When an ebuild is being sourced for metadata querying rather than for a build (that is to say, when
none of the src_ or pkg_ functions are to be called), no external command may be executed. The
package manager may take steps to enforce this.

12.1 System commands

Any ebuild not listed in the system set for the active profile(s) may assume the presence of every
command that is always provided by the system set for that profile. However, it must target the
lowest common denominator of all systems on which it might be installed—in most cases this means
that the only packages that can be assumed to be present are those listed in the base profile or
equivalent, which is inherited by all available profiles. If an ebuild requires any applications not
provided by the system profile, or that are provided conditionally based on USE flags, appropriate
dependencies must be used to ensure their presence.

12.1.1 Guaranteed system commands
The following commands must always be available in the ebuild environment:

¢ All builtin commands in GNU bash, version as listed in table 6.1.

* sed must be available, and must support all forms of invocations valid for GNU sed version 4
or later.

* patch must be available, and must support all inputs valid for GNU patch, version as listed in
table 12.1.

» find and xargs must be available, and must support all forms of invocations valid for GNU
findutils version 4.4 or later. Only for EAPIs listed in table 12.1 as requiring GNU find.

12.2 Commands provided by package dependencies

In some cases a package’s build process will require the availability of executables not provided by
the core system, a common example being autotools. The availability of commands provided by the

Table 12.1: System commands for EAPIs

EAPI GNU find? GNU patch version

0,1,2,3,4 Undefined Any
5,6 Yes Any
7,8,9 Yes 2.7

61

GNU-PATCH
GNU-FIND

CHAPTER 12. AVAILABLE COMMANDS 62

Table 12.2: EAPI command failure behaviour

EAPI Command failure = Supports nonfatal is both a function
behaviour nonfatal? and an external command?
0,1,2,3 Non-zero exit No n/a
4,5,6 Aborts Yes No
7,8,9 Aborts Yes Yes

particular types of dependencies is explained in section 8.1.

12.3 Ebuild-specific commands

The following commands will always be available in the ebuild environment, provided by the pack-
age manager. Except where otherwise noted, they may be internal (shell functions or aliases) or
external commands available in PATH; where this is not specified, ebuilds may not rely upon either
behaviour. Unless otherwise specified, it is an error if an ebuild calls any of these commands in
global scope.

Unless otherwise noted, any output of these commands ends with a newline.

12.3.1 Failure behaviour and related commands

Where a command is listed as having EAPI dependent failure behaviour, a failure shall either result] DIE-ON-FAILURE
in a non-zero exit status or abort the build process, as determined by table 12.2.

The following commands affect this behaviour:

nonfatal Takes one or more arguments and executes them as a command, preserving the exit status.
If this results in a command being called that would normally abort the build process due to a
failure, instead a non-zero exit status shall be returned. Only in EAPIs listed in table 12.2 as
supporting nonfatal.

In EAPIs listed in table 12.2 as having nonfatal defined both as a shell function and as an
external command, the package manager must provide both implementations to account for
calling directly in ebuild scope or through xargs.

Explicit die or assert commands only respect nonfatal when called with the -n option and
in EAPIs supporting this option, see table 12.6.

12.3.2 Banned commands

Some commands are banned in some EAPIs. If a banned command is called, the package manager] BANNED-COMMANDS

must abort the build process indicating an error.

12.3.3 Sandbox commands

These commands affect the behaviour of the sandbox. Each command takes a single path as argu-
ment. Ebuilds must not run any of these commands once the current phase function has returned.

addread Add a path to the permitted read list.
addwrite Add a path to the permitted write list.

addpredict Add a path to the predict list. Any write to a location in this list will be denied, but will
not trigger access violation messages or abort the build process.

adddeny Add a path to the deny list.

CHAPTER 12. AVAILABLE COMMANDS 63

Table 12.3: Banned commands

EAPI Command banned?
dohard dosed einstall dohtml dolib 1libopts

0,1,2,3 No No No No No No
4,5 Yes Yes No No No No
6 Yes Yes Yes No No No
7,8,9 Yes Yes Yes Yes Yes Yes

EAPI Command banned?

useq hasv hasq assert domo

0,1,2,3,4,5,6,7 No No No No No
8 Yes Yes Yes No No
9 Yes Yes Yes Yes Yes

Table 12.4: Package manager query command options supported by EAPIs

EAPI --host-root? -b? -d? -r?
0,1,2,3,4 No No No No
5,6 Yes No No No
7,8,9 No Yes Yes Yes

12.3.4 Package manager query commands

These commands are used to extract information about the system. Ebuilds must not run any of these
commands in parallel with any other package manager command. Ebuilds must not run any of these
commands once the current phase function has returned.

In EAPIs listed in table 12.4 as supporting option --host-root, this flag as the first argument will
cause the query to apply to the host root. Otherwise, it applies to ROOT.

In EAPIs listed in table 12.4 as supporting options -b, -d and -r, these mutually exclusive flags
as the first argument will cause the query to apply to locations targetted by BDEPEND, DEPEND and
RDEPEND, respectively. When none of these options are given, -r is assumed.

has_version Takes exactly one package dependency specification as an argument. Returns true if a
package matching the specification is installed, and false otherwise.

best_version Takes exactly one package dependency specification as an argument. If a matching
package is installed, prints category/package-version of the highest matching version;
otherwise, prints an empty string. The exit code is unspecified.

12.3.5 Output commands

These commands display messages to the user. Unless otherwise stated, the entire argument list
is used as a message, with backslash-escaped characters interpreted as for the echo -e command
of bash, notably \t for a horizontal tab, \n for a new line, and \\ for a literal backslash. These
commands must be implemented internally as shell functions and may be called in global scope.
Ebuilds must not run any of these commands once the current phase function has returned.

Unless otherwise noted, output may be sent to stderr or some other appropriate facility. In EAPIs
listed in table 12.5 as not allowing stdout output, using stdout as an output facility is forbidden.

einfo Displays an informational message.
einfon Displays an informational message without a trailing newline.

elog Displays an informational message of slightly higher importance. The package manager may
choose to log elog messages by default where einfo messages are not, for example.

PM-QUERY-OPTIONS

[OUTPUT-NO-STDOUT

CHAPTER 12. AVAILABLE COMMANDS 64

Table 12.5: Output commands for EAPIs

EAPI Commands can output to stdout? Supports eqawarn?
0,1,2,3,4,5,6 Yes No
7,8,9 No Yes

Table 12.6: Properties of die command in EAPIs

EAPI Supports die -n? die works in subshell?
0,1,2,3,4,5 No No
6 Yes No
7,8,9 Yes Yes

Table 12.7: EAPIs supporting pipestatus

EAPI Supports pipestatus?
0,1,2,3,4,5,6,7,8 No
9 Yes

ewarn Displays a warning message. Must not go to stdout.

eqawarn Display a QA warning message intended for ebuild developers. The package manager
may provide appropriate mechanisms to skip those messages for normal users. Must not go to
stdout. Only available in EAPIs listed in table 12.5 as supporting eqawarn.

eerror Displays an error message. Must not go to stdout.

ebegin Displays an informational message. Should be used when beginning a possibly lengthy
process, and followed by a call to eend.

eend Indicates that the process begun with an ebegin message has completed. Takes one fixed ar-
gument, which is a numeric return code, and an optional message in all subsequent arguments.
If the first argument is 0, prints a success indicator; otherwise, prints the message followed by
a failure indicator. Returns its first argument as exit status.

12.3.6 Error commands

These commands are used when an error is detected that will prevent the build process from com-
pleting. Ebuilds must not run any of these commands once the current phase function has returned.

die If called under the nonfatal command (as per section 12.3.1) and with -n as its first parameter,
displays a failure message provided in its following argument and then returns a non-zero exit
status. Only in EAPIs listed in table 12.6 as supporting option -n. Otherwise, displays a failure
message provided in its first and only argument, and then aborts the build process.

In EAPIs listed in table 12.6 as not providing subshell support, die is not guaranteed to work
correctly if called from a subshell environment.

assert Checks the shell’s pipe status array, and if any element is non-zero (indicating failure), calls
die, passing any parameters to it. In EAPIs listed in table 12.3, this command is banned as
per section 12.3.2.

pipestatus Checks the shell’s pipe status array, i.e. the exit status of the command(s) in the most
recently executed foreground pipeline. Returns shell true (0) if all elements are zero, or the
last non-zero element otherwise. If called with -v as the first argument, also outputs the pipe
status array as a space-separated list. Only available in EAPIs listed in table 12.7 as supporting
pipestatus.

EQAWARN

NONFATAL-DIE

SUBSHELL-DIE

PIPESTATUS

CHAPTER 12. AVAILABLE COMMANDS 65

12.3.7 Patch commands

These commands are used during the src_prepare phase to apply patches to the package’s sources.
Ebuilds must not run any of these commands once the current phase function has returned.

eapply Takes zero or more GNU patch options, followed by one or more file or directory paths. Pro-
cesses options and applies all patches found in specified locations according to algorithm 12.1.
If applying the patches fails, it aborts the build using die, unless run using nonfatal, in which
case it returns non-zero exit status. Only available in EAPIs listed in table 12.8 as supporting

eapply.
Algorithm 12.1 eapply logic
1: if any parameter is equal to "--" then
2: collect all parameters before the first "--" in the options array
3: collect all parameters after the first "--" in the files array
4: else if any parameter that begins with a hyphen follows one that does not then
5: abort the build process with an error
6: else
7. collect all parameters beginning with a hyphen in the options array
8: collect all remaining parameters in the files array
9: end if

10: if the files array is empty then

11: abort the build process with an error
12: end if

13: for all x in the files array do

14: if $x is a directory then

15: if not any files match $x/*.diff or $x/*.patch then

16: abort the build process with an error

17: end if

18: for all files £ matching $x/*.diff or $x/*.patch, sorted in POSIX locale do

19: call patch -pl -f -g0 --no-backup-if-mismatch "${options[@]}" < "$f"
20: if child process returned with non-zero exit status then

21: return immediately with that status

22: end if

23: end for

24: else

25: call patch -pl -f -g0 --no-backup-if-mismatch "${options[@]}" < "$x"
26: if child process returned with non-zero exit status then

27: return immediately with that status

28: end if

29: end if

30: end for

31: return shell true (0)

eapply_user Takes no arguments. Package managers supporting it apply user-provided patches to
the source tree in the current working directory. Exact behaviour is implementation defined and

beyond the scope of this specification. Package managers not supporting it must implement
the command as a no-op. Returns shell true (0) if patches applied successfully, or if no patches
were provided. Otherwise, aborts the build process, unless run using nonfatal, in which
case it returns non-zero exit status. Only available in EAPIs listed in table 12.8 as supporting
eapply_user. In EAPIs where it is supported, eapply_user must be called once in the
src_prepare phase. For any subsequent calls, the command will do nothing and return O.

12.3.8 Build commands

These commands are used during the src_configure, src_compile, src_test, and src_
install phases to run the package’s build commands. Ebuilds must not run any of these commands
once the current phase function has returned.

CHAPTER 12. AVAILABLE COMMANDS 66

Table 12.8: Patch commands for EAPIs

EAPI eapply? eapply_user?
0,1,2,3,4,5 No No
6,7,8,9 Yes Yes

econf Calls the program’s ./configure script. This is designed to work with GNU Autoconf-
generated scripts. Any additional parameters passed to econf are passed directly to
./configure, after the default options below. econf will look in the current working
directory for a configure script unless the ECONF_SOURCE environment variable is set, in
which case it is taken to be the directory containing it.

econf must pass the following options to the configure script:

--prefix must default to ${EPREFIX}/usr unless overridden by econf’s caller.
--mandir must be ${EPREFIX}/usr/share/man

--infodir must be ${EPREFIX}/usr/share/info

--datadir must be ${EPREFIX}/usr/share

--datarootdir must be ${EPREFIX}/usr/share, if the EAPI is listed in table 12.9
as using it. This option will only be passed if the string --datarootdir occurs in the
output of configure --help.

--sysconfdir must be ${EPREFIX}/etc
--localstatedir must be ${EPREFIX}/var/lib

--docdir must be ${EPREFIX}/usr/share/doc/${PF}, if the EAPI is listed in ta-
ble 12.9 as using it. This option will only be passed if the string --docdir occurs in the
output of configure --help.

--htmldir must be ${EPREFIX}/usr/share/doc/${PF}/html, if the EAPI is listed
in table 12.9 as using it. This option will only be passed if the string --htmldir occurs
in the output of configure --help.

--with-sysroot must be ${ESYSROOT: -/}, if the EAPI is listed in table 12.9 as using
it. This option will only be passed if the string --with-sysroot occurs in the output of
configure --help.

--build must be the value of the CBUILD environment variable. This option will only
be passed if CBUILD is non-empty.

--host must be the value of the CHOST environment variable.

--target must be the value of the CTARGET environment variable. This option will only
be passed if CTARGET is non-empty.

--libdir must be set according to algorithm 12.2.

--disable-dependency-tracking, if the EAPI is listed in table 12.9 as using it. This
option will only be passed if the string --disable-dependency-tracking occurs in
the output of configure --help.

--disable-silent-rules, if the EAPI is listed in table 12.9 as using it. This option
will only be passed if the string --disable-silent-rules occurs in the output of
configure --help.

--disable-static, if the EAPI is listed in table 12.9 as using it. This option will only
be passed if both strings --enable-static and --enable-shared occur in the output
of configure --help.

| ECONF-OPTIONS

CHAPTER 12. AVAILABLE COMMANDS 67

Table 12.9: Extra econf arguments for EAPIs

EAPI --datarootdir --docdir --htmldir --with-sysroot
0,1,2,3,4,5 No No No No
6 No Yes Yes No
7 No Yes Yes Yes
8,9 Yes Yes Yes Yes

EAPI --disable- --disable- --disable-static

dependency- silent-rules
tracking
0,1,2,3 No No No
4 Yes No No
5,6,7 Yes Yes No
8,9 Yes Yes Yes

For the option names beginning with with-, disable- or enable-, a string in configure
--help output matches only if it is not immediately followed by any of the characters
[A-Za-z0-9+_.-].

Note that the ${EPREFIX} component represents the same offset-prefix as described in ta-
ble 11.2. It facilitates offset-prefix installations which is supported by EAPIs listed in ta-
ble 11.5. When no offset-prefix installation is in effect, EPREFIX becomes the empty string,
making the behaviour of econf equal for both offset-prefix supporting and agnostic EAPIs.

econf must be implemented internally—that is, as a bash function and not an external script.
Should any portion of it fail, it must abort the build using die, unless run using nonfatal, in
which case it must return non-zero exit status.

Algorithm 12.2 econf --1ibdir logic

1:

—_ e e e e e
AN v

R A A T o

let prefix=${ EPREFIX}/usr
if the caller specified --exec-prefix=$ep then
let prefix=$ep
else if the caller specified --prefix=$p then
let prefix=$p
end if
let libdir=
if the ABI environment variable is set then
let libvar=LIBDIR_$ABI
if the environment variable named by libvar is set then
let libdir=the value of the variable named by libvar
end if

. end if

if libdir is non-empty then
pass --libdir=$prefix/$libdir to configure
end if

emake Calls the ${MAKE} program, or GNU make if the MAKE variable is unset. Any arguments

given are passed directly to the make command, as are the user’s chosen MAKEOPTS. Argu-
ments given to emake override user configuration. See also section 12.1.1. emake must be
an external program and cannot be a function or alias—it must be callable from e. g. xargs.
Failure behaviour is EAPI dependent as per section 12.3.1.

einstall A shortcut for the command given in listing 12.1. Any arguments given to einstall

are passed verbatim to emake, as shown. Failure behaviour is EAPI dependent as per sec-
tion 12.3.1. In EAPIs listed in table 12.3, this command is banned as per section 12.3.2.

CHAPTER 12. AVAILABLE COMMANDS 68

The variable ED is defined as in table 11.2 and depends on the use of an offset-prefix. When
such offset-prefix is absent, ED is equivalent to D. ED is always available in EAPIs that support
offset-prefix installations as listed in table 11.5, hence EAPIs lacking offset-prefix support
should use D instead of ED in the command given in listing 12.1. Variable 1ibdir is an
auxiliary local variable whose value is determined by algorithm 12.4.

Listing 12.1 einstall command

emake \
prefix="${ED}"/usr \
datadir="${ED}"/usr/share \
mandir="${ED}"/usr/share/man \
infodir="${ED}"/usr/share/info \
libdir="${ED}"/usr/${libdir} \
localstatedir="${ED}"/var/1lib \
sysconfdir="${ED}"/etc \
-3t N\
"$e" \

install

12.3.9 Installation commands

These commands are used to install files into the staging area, in cases where the package’s make
install target cannot be used or does not install all needed files. Except where otherwise stated,
all filenames created or modified are relative to the staging directory including the offset-prefix ED
in offset-prefix aware EAPISs, or just the staging directory D in offset-prefix agnostic EAPIs. Existing
destination files are overwritten. These commands must all be external programs and not bash func-
tions or aliases—that is, they must be callable from xargs. Calling any of these commands without
a filename parameter is an error. Ebuilds must not run any of these commands once the current phase
function has returned.

dobin Installs the given files into DESTTREE/bin, where DESTTREE defaults to /usr. Gives the
files mode 0755 and transfers file ownership to the superuser or its equivalent on the system or
installation at hand. In a non-offset-prefix installation this ownership is 0: 0, while in an offset-
prefix aware installation this may be e. g. joe :users. Failure behaviour is EAPI dependent as
per section 12.3.1.

doconfd Installs the given config files into /etc/conf.d/, by default with file mode 0644. For
EAPIs listed in table 12.17 as respecting insopts in doconfd, the install options set by
the most recent insopts call override the default. Failure behaviour is EAPI dependent as per
section 12.3.1.

dodir Creates the given directories, by default with file mode 0755, or with the install options set
by the most recent diropts call. Failure behaviour is EAPI dependent as per section 12.3.1.

dodoc Installs the given files into a subdirectory under /usr/share/doc/${PF}/ with file mode
0644. The subdirectory is set by the most recent call to docinto. If docinto has not yet
been called, instead installs to the directory /usr/share/doc/${PF}/. For EAPIs listed
in table 12.10 as supporting -r, if the first argument is -r, any subsequent arguments that
are directories are installed recursively to the appropriate location; in any other case, it is
an error for a directory to be specified. Any directories that don’t already exist are created
using install -d with no additional options. Failure behaviour is EAPI dependent as per
section 12.3.1.

doenvd Installs the given environment files into /etc/env.d/, by default with file mode 0644. For
EAPIs listed in table 12.17 as respecting insopts in doenvd, the install options set by the
most recent insopts call override the default. Failure behaviour is EAPI dependent as per
section 12.3.1.

CHAPTER 12. AVAILABLE COMMANDS 69

doexe Installs the given files into the directory specified by the most recent exeinto call. If
exeinto has not yet been called, behaviour is undefined. Files are installed by default with
file mode 0755, or with the install options set by the most recent exeopts call. Failure
behaviour is EAPI dependent as per section 12.3.1.

dohard Takes two parameters. Creates a hardlink from the second to the first. Both paths are
relative to the staging directory including the offset-prefix ED in offset-prefix aware EAPISs, or
just the staging directory D in offset-prefix agnostic EAPIs. In EAPIs listed in table 12.3, this
command is banned as per section 12.3.2.

doheader Installs the given header files into /usr/include/, by default with file mode 0644. For
EAPIs listed in table 12.17 as respecting insopts in doheader, the install options set by
the most recent insopts call override the default. If the first argument is -r, then operates
recursively, descending into any directories given. Only available in EAPIs listed in table 12.11
as supporting doheader. Failure behaviour is EAPI dependent as per section 12.3.1.

dohtml Installs the given HTML files into a subdirectory under /usr/share/doc/${PF}/. The
subdirectory is html by default, but this can be overridden with the docinto function. Files
to be installed automatically are determined by extension and the default extensions are css,
gif, htm, html, jpeg, jpg, js and png. These default extensions can be extended or reduced
(see below). The options that can be passed to dohtml are as follows:

-r enables recursion into directories.

-V enables verbosity.

-A adds file type extensions to the default list.

-a sets file type extensions to only those specified.

-f list of files that are able to be installed.

-x list of directories that files will not be installed from (only used in conjunction with -r).
-p sets a document prefix for installed files, not to be confused with the global offset-prefix.

In EAPISs listed in table 12.3, this command is banned as per section 12.3.2. Failure behaviour
is EAPI dependent as per section 12.3.1.

It is undefined whether a failure shall occur if -r is not specified and a directory is encountered.
Ebuilds must not rely upon any particular behaviour.

doinfo Installs the given GNU Info files into the /usr/share/info area with file mode 0644.
Failure behaviour is EAPI dependent as per section 12.3.1.

doinitd Installs the given initscript files into /etc/init.d, by default with file mode 0755. For
EAPISs listed in table 12.17 as respecting insopts in doinitd, the install options set by
the most recent exeopts call override the default. Failure behaviour is EAPI dependent as per
section 12.3.1.

doins Takes one or more files as arguments and installs them into INSDESTTREE, by default with
file mode 0644, or with the install options set by the most recent insopts call. If the first
argument is -r, then operates recursively, descending into any directories given. Any direc-
tories are created as if dodir was called. For EAPISs listed in table 12.12, doins must install
symlinks as symlinks; for other EAPIs, behaviour is undefined if any symlink is encountered.
Failure behaviour is EAPI dependent as per section 12.3.1.

dolib.a For each argument, installs it into the appropriate library subdirectory under DESTTREE, as
determined by algorithm 12.4. Files are installed with file mode 0644. Any symlinks are
installed into the same directory as relative links to their original target. Failure behaviour is
EAPI dependent as per section 12.3.1.

dolib.so As for dolib.a except each file is installed with mode 0755.

dolib Asfordolib.a except that the default install mode can be overriden with the install options
set by the most recent Libopts call. In EAPIs listed in table 12.3, this command is banned as
per section 12.3.2.

DOHEADER

CHAPTER 12. AVAILABLE COMMANDS 70

doman Installs the given man pages into the appropriate subdirectory of /usr/share/man depend-
ing upon its apparent section suffix (e. g. foo. 1 goes to /usr/share/man/man1/foo. 1) with
file mode 0644.

In EAPISs listed in table 12.13 as supporting language detection by filename, a man page with
name of the form foo.lang.1 shall go to /usr/share/man/lang/manl/foo.1, where lang
refers to a pair of lower-case ASCII letters optionally followed by an underscore and a pair of
upper-case ASCII letters. Failure behaviour is EAPI dependent as per section 12.3.1.

With option -i18n=lang, a man page shall be installed into an appropriate subdirectory of
/usr/share/man/lang (e.g. /usr/share/man/lang/manl/foo.pl.1 would be the desti-
nation for foo.pl.1). The lang subdirectory level is skipped if lang is the empty string. In
EAPIs specified by table 12.13, the -118n option takes precedence over the language code in
the filename.

domo Installs the given .mo files with file mode 0644 into the appropriate subdirectory of the locale
tree, generated by taking the basename of the file, removing the . * suffix, and appending /LC_
MESSAGES. The name of the installed files is the package name with .mo appended. Failure
behaviour is EAPI dependent as per section 12.3.1. The locale tree location is EAPI dependent
as per table 12.15. In EAPIs listed in table 12.3, this command is banned as per section 12.3.2.

dosbin As dobin, but installs to DESTTREE/sbin.

dosym Creates a symbolic link named as for its second parameter, pointing to the first. If the direc-
tory containing the new link does not exist, creates it.

In EAPISs listed in table 12.16 as supporting creation of relative paths, when called with option
-r, the first parameter (the link target) is converted from an absolute path to a path relative to
the the second parameter (the link name). The algorithm must return a result identical to the
one returned by the function in listing 12.2, with realpath and dirname from GNU coreutils
version 8.32. Specifying option -r together with a relative path as first (target) parameter is an
error.

Failure behaviour is EAPI dependent as per section 12.3.1.

Listing 12.2 Create a relative path for dosym -r

dosym_relative_path() {
local link=$(realpath -m -s "/${2#/}")
local linkdir=$(dirname "${linkl}")
realpath -m -s --relative-to="${linkdir}" "$1"

fowners Acts as for chown, but takes paths relative to the image directory. Failure behaviour is
EAPI dependent as per section 12.3.1.

fperms Acts as for chmod, but takes paths relative to the image directory. Failure behaviour is EAPI
dependent as per section 12.3.1.

keepdir For each argument, creates a directory as for dodir, and an empty file whose name starts
with .keep in that directory to ensure that the directory does not get removed by the pack-
age manager should it be empty at any point. Failure behaviour is EAPI dependent as per
section 12.3.1.

newbin As for dobin, but takes two parameters. The first is the file to install; the second is the new
filename under which it will be installed. In EAPIs specified by table 12.14, standard input is
read when the first parameter is - (a hyphen). In this case, it is an error if standard input is a
terminal.

newconfd As for doconfd, but takes two parameters as for newbin.
newdoc As above, for dodoc.

newenvd As above, for doenvd.

| DOMAN-LANGS

DOMO-PATH

’ DOSYM-RELATIVE

| NEWFOO-STDIN

CHAPTER 12. AVAILABLE COMMANDS 71

Table 12.10: EAPIs supporting dodoc -r

EAPI Supports dodoc -r?

0,1,2,3 No
4,5,6,7,8,9 Yes

Table 12.11: EAPIs supporting doheader and newheader

EAPI Supports doheader and newheader?
4 No
9 Yes

0,1,2,3,
5,6,7,8,

Table 12.12: EAPIs supporting symlinks for doins

EAPI doins supports symlinks?

0,1,2,3 No
4,5,6,7,8,9 Yes

Table 12.13: doman language support options for EAPIs

EAPI Language detection by filename? Option -i18n takes precedence?
0, 1 No Not applicable
2,3 Yes No
4,5,6,7,8,9 Yes Yes

Table 12.14: EAPIs supporting stdin for new* commands

EAPI new* can read from stdin?
0,1,2,3,4 No
5,6,7,8,9 Yes

newexe As above, for doexe.
newheader As above, for doheader.
newinitd As above, for doinitd.
newins As above, for doins.
newlib.a As above, for dolib.a.
newlib.so As above, for dolib.so.
newman As above, for doman.

newsbin As above, for dosbin.

12.3.10 Commands affecting install destinations

The following commands are used to set the various destination trees and options used by the above
installation commands. They must be shell functions or aliases, due to the need to set variables
read by the above commands. Ebuilds must not run any of these commands once the current phase
function has returned.

into Takes exactly one argument, and sets the value of DESTTREE for future invocations of the above
utilities to it. Creates the directory under ${ED} in offset-prefix aware EAPIs or under ${D}

CHAPTER 12. AVAILABLE COMMANDS 72

Table 12.15: domo destination path in EAPIs

EAPI Destination path
0,1,2,3,4,5,6 ${DESTTREE}/share/locale
7,8,9 /usr/share/locale
Table 12.16: EAPIs supporting dosym -r
EAPI dosym supports creation of relative paths?
0,1,2,3,4,5,6,7 No
8,9 Yes
Table 12.17: Commands respecting insopts for EAPIs
EAPI doins? doconfd? doenvd? doheader?
0,1,2,3,4,5,6,7 Yes Yes Yes Yes
8,9 Yes No No No

Table 12.18: Commands respecting exeopts for EAPIs

EAPI doexe? doinitd?
0,1,2,3,4,5,6,7 Yes Yes
8,9 Yes No

in offset-prefix agnostic EAPIs, using install -d with no additional options, if it does not
already exist. Failure behaviour is EAPI dependent as per section 12.3.1.

insinto As into, for INSDESTTREE.
exeinto As into, for install path of doexe and newexe.
docinto As into, for install subdirectory of dodoc et al.

insopts Takes one or more arguments, and sets the options passed by doins et al. to the install
command to them. Behaviour upon encountering empty arguments is undefined. Depending
on EAPI, affects only those commands that are specified by table 12.17 as respecting insopts.

diropts As insopts, for dodir et al.

exeopts As insopts, for doexe et al. Depending on EAPI, affects only those commands that are
specified by table 12.18 as respecting exeopts.

libopts As insopts, for dolib et al. In EAPIs listed in table 12.3, this command is banned as per
section 12.3.2.

12.3.11 Commands controlling manipulation of files in the staging area

These commands are used to control optional manipulations that the package manager may perform
on files in the staging directory ED, like compressing files or stripping symbols from object files.

For each of the operations mentioned below, the package manager shall maintain an inclusion list
and an exclusion list, in order to control which directories and files the operation may or may not be
performed upon. The initial contents of the two lists is specified below for each of the commands,
respectively.

Any of these operations shall be carried out after src_install has completed, and before the exe-
cution of any subsequent phase function. For each item in the inclusion list, pretend it has the value
of the ED variable prepended, then:

EXEOPTS

CHAPTER 12. AVAILABLE COMMANDS 73

Table 12.19: Commands controlling manipulation of files in the staging area in EAPIs

EAPI Supports controllable Supports controllable
compression and docompress? stripping and dostrip?
0,1,2,3 No No
4,5,6 Yes No
7,8,9 Yes Yes

« If it is a directory, act as if every file or directory immediately under this directory were in the
inclusion list.

* If the item is a file, the operation may be performed on it, unless it has been excluded as
described below.

* If the item does not exist, it is ignored.

Whether an item is to be excluded is determined as follows: For each item in the exclusion list,
pretend it has the value of the ED variable prepended, then:

* If it is a directory, act as if every file or directory immediately under this directory were in the
exclusion list.

* If the item is a file, the operation shall not be performed on it.

« If the item does not exist, it is ignored.

The package manager shall take appropriate steps to ensure that any operations that it performs on
files in the staging area behave sensibly even if an item is listed in the inclusion list multiple times or
if an item is a symlink.

In EAPIs listed in table 12.19 as supporting controllable compression, the package manager may
optionally compress a subset of the files under the ED directory. The package manager shall ensure
that its compression mechanisms do not compress a file twice if it is already compressed using the
same compressed file format. For compression, the initial values of the two lists are as follows:

¢ The inclusion list contains /usr/share/doc, /usr/share/info and /usr/share/man.
¢ The exclusion list contains /usr/share/doc/${PF}/html.

In EAPIs listed in table 12.19 as supporting controllable stripping of symbols, the package manager
may strip a subset of the files under the ED directory. For stripping of symbols, the initial values of
the two lists are as follows:

* If the RESTRICT variable described in section 7.3.6 enables a strip token, the inclusion list is
empty; otherwise it contains / (the root path).
* The exclusion list is empty.

The following commands may be used in src_install to alter these lists. It is an error to call any
of these functions from any other phase.

docompress If the first argument is -x, add each of its subsequent arguments to the exclusion list
for compression. Otherwise, add each argument to the respective inclusion list. Only available
in EAPIs listed in table 12.19 as supporting docompress.

dostrip If the first argument is -x, add each of its subsequent arguments to the exclusion list for
stripping of symbols. Otherwise, add each argument to the respective inclusion list. Only
available in EAPIs listed in table 12.19 as supporting dostrip.

12.3.12 USE list functions

These functions provide behaviour based upon set or unset use flags. Ebuilds must not run any of
these commands once the current phase function has returned.

Unless otherwise noted, if any of these functions is called with a flag value that is not included in
TUSE_EFFECTIVE, either behaviour is undefined or it is an error as decided by table 12.20.

DOCOMPRESS

CHAPTER 12. AVAILABLE COMMANDS 74

Table 12.20: EAPI behaviour for use queries not in IUSE_EFFECTIVE

EAPI Behaviour

0,1,2,3 Undefined
4,5,6,7,8,9 Error

Table 12.21: usev, use_with and use_enable arguments for EAPIs

EAPI usev hasoptional use_with and use_enable
second argument? support empty third argument?

0,1,2,3 No No
4,5,6,7 No Yes
8,9 Yes Yes

Table 12.22: EAPIs supporting usex and in_iuse

EAPI usex? in_iuse?
0,1,2,3,4 No No
5 Yes No

6,7,8,9 Yes Yes

use Returns shell true (0) if the first argument (a USE flag name) is enabled, false otherwise. If the
flag name is prefixed with !, returns true if the flag is disabled, and false if it is enabled. It is
guaranteed that this command is quiet.

usev The same as use, but also prints the flag name if the condition is met. In EAPIs listed in
table 12.21 as supporting an optional second argument for usev, prints the second argument
instead, if it is specified and if the condition is met.

useq Deprecated synonym for use. In EAPIs listed in table 12.3, this command is banned as per
section 12.3.2.

use_with Has one-, two-, and three-argument forms. The first argument is a USE flag name, the
second a configure option name (${opt}), defaulting to the same as the first argument if not
provided, and the third is a string value (${value}). For EAPIs listed in table 12.21 as not
supporting it, an empty third argument is treated as if it weren’t provided. If the USE flag is set,
outputs --with-${opt}=${value} if the third argument was provided, and --with-${opt}
otherwise. If the flag is not set, then it outputs --without-${opt}. The condition is inverted
if the flag name is prefixed with !; this is valid only for the two- and three-argument forms.

use_enable Works the same as use_with(), but outputs --enable- or --disable- instead of
--with- or --without-.

usex Accepts at least one and at most five arguments. The first argument is a USE flag name,
any subsequent arguments (${arg2} to ${argb}) are string values. If not provided,
${arg2} and ${arg3} default to yes and no, respectively; ${argd} and ${argb} de-
fault to the empty string. If the USE flag is set, outputs ${arg2}${args}. Otherwise, outputs
${arg3}${argb}. The condition is inverted if the flag name is prefixed with !. Only available
in EAPIs listed in table 12.22 as supporting usex.

in_iuse Returns shell true (0) if the first argument (a USE flag name) is included in IUSE_
EFFECTIVE, false otherwise. Only available in EAPIs listed in table 12.22 as supporting
in_ijiuse.

USE-WITH

CHAPTER 12. AVAILABLE COMMANDS 75

12.3.13 Text list functions

These functions check a list of arguments for a particular value. They must be implemented internally
as shell functions and may be called in global scope.

has Returns shell true (0) if the first argument (a word) is found in the list of subsequent arguments,
false otherwise. Guaranteed quiet.

hasv The same as has, but also prints the first argument if found. In EAPIs listed in table 12.3, this
command is banned as per section 12.3.2.

hasq Deprecated synonym for has. In EAPIs listed in table 12.3, this command is banned as per
section 12.3.2.

12.3.14 Version manipulation and comparison commands

These commands provide utilities for working with version strings. They must all be implemented
internally as shell functions, i.e. they are callable in global scope. Availability of these commands
per EAPI is listed in table 12.23.

For the purpose of version manipulation commands, the specification provides a method for split-
ting an arbitrary version string (not necessarily conforming to section 3.2) into a series of version
components and version separators.

A version component consists either purely of digits ([0-9]1+) or purely of upper- and lower-
case ASCII letters ([A-Za-z]+). A version separator is either a string of any other characters
([~A-Za-z0-9]+), or it occurs at the transition between a sequence of digits and a sequence of
letters, or vice versa. In the latter case, the version separator is an empty string.

The version string is processed left-to-right, with the successive version components being assigned
successive indices starting with 1. The separator following a version component is assigned the index
of the preceding version component. If the first version component is preceded by a non-empty string
of version separator characters, this separator is assigned the index 0.

The version components are presumed present if not empty. The version separators between version
components are always presumed present, even if they are empty. The version separators preceding
the first version component and following the last are only presumed present if they are not empty.

Whenever the commands support ranges, the range is specified as an unsigned integer, optionally
followed by a hyphen (-), which in turn is optionally followed by another unsigned integer.

A single integer specifies a single component or separator index. An integer followed by a hyphen
specifies all components or separators starting with the one at the specified index. Two integers
separated by a hyphen specify a range starting at the index specified by the first and ending at the
second, inclusively.

ver_cut Takes a range as the first argument, and optionally a version string as the second. Prints a
substring of the version string starting at the version component specified as start of the range
and ending at the version component specified as end of the range. If the version string is not
specified, ${PV} is used.

If the range spans outside the present version components, the missing components and sepa-
rators are presumed empty. In particular, the range starting at zero includes the zeroth version
separator if present, and the range spanning past the last version component includes the suffix
following it if present. A range that does not intersect with any present version components
yields an empty string.

ver_rs Takes one or more pairs of arguments, optionally followed by a version string. Every argu-
ment pair specifies a range and a replacement string. Prints a version string after performing
the specified separator substitutions. If the version string is not specified, ${PV} is used.

For every argument pair specified, each of the version separators present at indices specified
by the range is replaced with the replacement string, in order. If the range spans outside the
range of present version separators, it is silently truncated.

| VER-COMMANDS

CHAPTER 12. AVAILABLE COMMANDS 76

Table 12.23: EAPIs supporting version manipulation commands

EAPI ver_cut? ver_rs? ver_test? ver_replacing?
0,1,2,3,4,5,6 No No No No
7,8 Yes Yes Yes No
9 Yes Yes Yes Yes

ver_test Takes two or three arguments. In the 3-argument form, takes an LHS version string, fol-
lowed by an operator, followed by an RHS version string. In the 2-argument form, the first
version string is omitted and ${PVR} is used as LHS version string. The operator can be -eq
(equal to), -ne (not equal to), -gt (greater than), -ge (greater than or equal to), -1t (less than)
or -1e (less than or equal to). Returns shell true (0) if the specified relation between the LHS
and RHS version strings is fulfilled.

Both version strings must conform to the version specification in section 3.2. Comparison is
done using algorithm 3.1.

ver_replacing Takes an operator and a version string as arguments, which follow the same specifi-
cation as in ver_test. Iterates over the elements of REPLACING_VERSIONS, using ver_test
to compare each element against the version string. Returns shell true (0) if the specified re-
lation holds for any element, shell false (1) otherwise. Note that if REPLACING_VERSIONS is
empty, shell false is returned.

Only available in EAPISs listed in table 12.23 as supporting ver_replacing. The command
is only meaningful in phases where REPLACING_VERSIONS is defined.

12.3.15 Misc commands

The following commands are always available in the ebuild environment, but don’t really fit in any of
the above categories. Ebuilds must not run any of these commands once the current phase function
has returned.

dosed Takes any number of arguments, which can be files or sed expressions. For each argument,
if it names, relative to ED (offset-prefix aware EAPIs) or D (offset-prefix agnostic EAPIs) a file
which exists, then sed is run with the current expression on that file. Otherwise, the current
expression is set to the text of the argument. The initial value of the expression is s: ${ED}: : g
in offset-prefix aware EAPIs and s: ${D}: : g in offset-prefix agnostic EAPIs. In EAPIs listed
in table 12.3, this command is banned as per section 12.3.2.

unpack Unpacks one or more source archives, in order, into the current directory. For compressed
files, creates the target file in the current directory, with the compression suffix removed from
its name. After unpacking, must ensure that all filesystem objects inside the current working
directory (but not the current working directory itself) have permissions a+r,ut+w,go-w and
that all directories under the current working directory additionally have permissions a+x.

Arguments to unpack are interpreted as follows:

* A filename without path (i. e. not containing any slash) is looked up in DISTDIR.

* An argument starting with the string ./ is a path relative to the working directory.

* Otherwise, for EAPIs listed in table 12.24 as supporting absolute and relative paths, the
argument is interpreted as a literal path (absolute, or relative to the working directory);
for EAPIs listed as not supporting such paths, unpack shall abort the build process.

Any unrecognised file format shall be skipped without raising an error. If unpacking a sup-
ported file format fails, unpack shall abort the build process.

Must be able to unpack the following file formats, if the relevant binaries are available:

e tar files (*.tar). Ebuilds must ensure that GNU tar is installed.

| VER-REPLACING

[UNPACK-ABSOLUTE

| UNPACK-EXTENSIONS

CHAPTER 12. AVAILABLE COMMANDS 77

Table 12.24: unpack behaviour for EAPIs

EAPI Supports absolute and relative paths? Case-insensitive matching?
0,1,2,3,4,5 No No
6,7,8,9 Yes Yes

Table 12.25: unpack extensions for EAPIs

EAPI .xz? .tar.xz? .txz? .7z? .rar? .lha?

0,1,2 No No No Yes Yes Yes
3,4,5 Yes Yes No Yes Yes Yes
6,7 Yes Yes Yes Yes Yes Yes
8,9 Yes Yes Yes No No No

* gzip-compressed files (*.gz, *.z, *.Z). Ebuilds must ensure that GNU gzip is in-
stalled.

* gzip-compressed tar files (*.tar.gz, *.tgz, *.tar.z, *.tar.Z).Ebuilds musten-
sure that GNU gzip and GNU tar are installed.

* bzip2-compressed files (*.bz2, *.bz). Ebuilds must ensure that bzip2 is installed.

* bzip2-compressed tar files (*.tar.bz2, *.tbz2, *.tar.bz, *.tbz). Ebuilds must
ensure that bzip2 and GNU tar are installed.

e zipfiles (*x.zip, *.ZIP, *.jar). Ebuilds mustensure that Info-ZIP Unzip is installed.

 7zip files (*.7z, *.7Z). Ebuilds must ensure that P7ZIP is installed. Only for EAPIs
listed in table 12.25 as supporting . 7z.

e rar files (*.rar, *.RAR). Ebuilds must ensure that RARLAB’s unrar is installed. Only
for EAPISs listed in table 12.25 as supporting .rar.

e LHA archives (*.LHA, *.LHa, *.lha, *.1lzh). Ebuilds must ensure that the lha pro-
gram is installed. Only for EAPISs listed in table 12.25 as supporting . lha.

e ar archives (*.a). Ebuilds must ensure that GNU binutils is installed.

* deb packages (*.deb). Ebuilds must ensure that the deb2targz program is installed on
those platforms where the GNU binutils ar program is not available and the installed ar
program is incompatible with GNU archives. Otherwise, ebuilds must ensure that GNU
binutils is installed.

* Izma-compressed files (*.1zma). Ebuilds must ensure that XZ Ultils is installed.

* lzma-compressed tar files (*.tar.lzma). Ebuilds must ensure that XZ Utils and GNU
tar are installed.

* xz-compressed files (*.xz). Ebuilds must ensure that XZ Utils is installed. Only for
EAPIs listed in table 12.25 as supporting . xz.

» xz-compressed tar files (*.tar.xz, *.txz). Ebuilds must ensure that XZ Utils and
GNU tar are installed. Only for EAPIs listed in table 12.25 as supporting .tar.xz or
.txz.

It is up to the ebuild to ensure that the relevant external utilities are available, whether by being
in the system set or via dependencies.

unpack matches filename extensions in a case-insensitive manner, for EAPIs listed such in
table 12.24.

inherit See section 10.1.

| UNPACK-IGNORE-CASE

CHAPTER 12. AVAILABLE COMMANDS 78

default Calls the default_ function for the current phase (see section 9.1.17). Must not be called if
the default_ function does not exist for the current phase in the current EAPI. Only available
in EAPIs listed in table 12.26 as supporting default.

einstalldocs Takes no arguments. Installs the files specified by the DOCS and HTML_DOCS variables
or a default set of files, according to algorithm 12.3. If called using nonfatal and any of the
called commands returns a non-zero exit status, returns immediately with the same exit status.
Only available in EAPIs listed in table 12.26 as supporting einstalldocs.

Algorithm 12.3 einstalldocs logic
1: save the value of the install directory for dodoc

2: set the install directory for dodoc to /usr/share/doc/${PF}

3: if the DOCS variable is a non-empty array then

4: call dodoc -r "${DOCS[@]}"

5: else if the DOCS variable is a non-empty scalar then

6: call dodoc -r ${DOCS}

7: else if the DOCS variable is unset then

8: for all d matching the filename expansion of README* ChangeLog AUTHORS NEWS TODO
CHANGES THANKS BUGS FAQ CREDITS CHANGELOG do

9: if file d exists and has a size greater than zero then

10: call dodoc with d as argument

11: end if

12 end for

13: end if

14: set the install directory for dodoc to /usr/share/doc/${PF}/html
15: if the HTML_DOCS variable is a non-empty array then

16: call dodoc -r "${HTML_DOCS[@]}"

17: else if the HTML_DOCS variable is a non-empty scalar then

18: call dodoc -r ${HTML_DOCS}

19: end if

20: restore the value of the install directory for dodoc

21: return shell true (0)

get_libdir Prints the libdir name obtained according to algorithm 12.4. Must be implemented inter-
nally as a shell function and may be called in global scope. Only available in EAPIs listed in
table 12.26 as supporting get_libdir.

Algorithm 12.4 Library directory logic
1: let libdir=11ib
2: if the ABI environment variable is set then
3: letlibvar=LIBDIR_$ABI
4: if the environment variable named by libvar is set then
5 let libdir=the value of the variable named by libvar
6: endif
7
8

. end if
. return the value of libdir

edo Takes one or more arguments. The entire argument list is output as an informational message
to stderr; individual tokens may be reformatted to avoid ambiguity. The first argument is then
executed as a command, with the remaining arguments passed to it. If the command fails,
edo aborts the build process using die, unless it was called under nonfatal, in which case it
returns a non-zero exit status.

edo must be implemented internally as a shell function. Only available in EAPIs listed in
table 12.26 as supporting edo.

DEFAULT-FUNC

EINSTALLDOCS

GET-LIBDIR

CHAPTER 12. AVAILABLE COMMANDS 79

Table 12.26: Misc commands for EAPIs

EAPI default? einstalldocs? get_libdir? edo?

0,1 No No No No
2,3,4,5 Yes No No No
6,7,8 Yes Yes Yes No
9 Yes Yes Yes Yes

12.3.16 Debug commands

The following commands are available for debugging. Normally all of these commands should be
no ops; a package manager may provide a special debug mode where these commands instead do
something. These commands must be implemented internally as shell functions and may be called
in global scope. Ebuilds must not run any of these commands once the current phase function has
returned.

debug-print If in a special debug mode, the arguments should be outputted or recorded using some
kind of debug logging.

debug-print-function Calls debug-print with $1: entering function as the first argument
and the remaining arguments as additional arguments.

debug-print-section Calls debug-print withnow in section $*.

12.3.17 Reserved commands and variables

Except where documented otherwise, all functions and variables that begin with any of the following
strings (ignoring case) are reserved for package manager use and may not be used or relied upon by
ebuilds:

e __ (two underscores)
* abort
¢ dyn
® prep
The same applies to functions and variables that contain any of the following strings (ignoring case):

* ebuild (unless immediately preceded by another letter)
* hook

¢ paludis

* portage

Chapter 13

Merging and unmerging

Note: In this chapter, file and regular file have their Unix meanings.

13.1 Overview

The merge process merges the contents of the D directory onto the filesystem under ROOT. This is not
a straight copy; there are various subtleties which must be addressed.

The unmerge process removes an installed package’s files. It is not covered in detail in this specifi-
cation.

13.2 Directories

Directories are merged recursively onto the filesystem. The method used to perform the merge is not
specified, so long as the end result is correct. In particular, merging a directory may alter or remove
the source directory under D.

Ebuilds must not attempt to merge a directory on top of any existing file that is not either a directory
or a symlink to a directory.

13.2.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the directory must be preserved,
except as follows:

* Any directory owned by the user used to perform the build must become owned by the supe-
ruser.

* Any directory whose group is the primary group of the user used to perform the build must
have its group be that of the superuser.

On SELinux systems, the SELinux context must also be preserved. Other directory attributes, in-
cluding modification time, may be discarded.

13.2.2 Empty directories

Behaviour upon encountering an empty directory is undefined. Ebuilds must not attempt to install an
empty directory.

13.3 Regular files
Regular files are merged onto the filesystem (but see the notes on configuration file protection, be-

low). The method used to perform the merge is not specified, so long as the end result is correct. In
particular, merging a regular file may alter or remove the source file under D.

80

CHAPTER 13. MERGING AND UNMERGING 81

Table 13.1: Preservation of file modification times (mtimes)

EAPI mtimes preserved?
0,1,2 Undefined
3,4,5,6,7,8,9 Yes

Ebuilds must not attempt to merge a regular file on top of any existing file that is not either a regular
file or a symlink to a regular file.

13.3.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the file must be preserved, except
as follows:

* Any file owned by the user used to perform the build must become owned by the superuser.

* Any file whose group is the primary group of the user used to perform the build must have its
group be that of the superuser.

» The package manager may reduce read and write permissions on executable files that have a
set*id bit set.

On SELinux systems, the SELinux context must also be preserved. Other file attributes may be
discarded.

13.3.2 File modification times

In EAPISs listed in table 13.1, the package manager must preserve modification times of regular files.
This includes files being compressed before merging. Exceptions to this are files newly created by
the package manager and binary object files being stripped of symbols.

When preserving, the seconds part of every regular file’s mtime must be preserved exactly. The sub-
second part must either be set to zero, or set to the greatest value supported by the operating system
and filesystem that is not greater than the sub-second part of the original time.

For any given destination filesystem, the package manager must ensure that for any two preserved
files a, b in that filesystem the relation mtime(a) < mtime(b) still holds, if it held under the original
image directory.

In other EAPIs, the behaviour with respect to file modification times is undefined.

13.3.3 Configuration file protection

The package manager must provide a means to prevent user configuration files from being overwrit-
ten by any package updates. The profile variables CONFIG_PROTECT and CONFIG_PROTECT_MASK
(section 5.3) control the paths for which this must be enforced.

In order to ensure interoperability with configuration update tools, the following scheme must be
used by all package managers when merging any regular file:

1. If the directory containing the file to be merged is not listed in CONFIG_PROTECT, and is not a
subdirectory of any such directory, and if the file is not listed in CONFIG_PROTECT, the file is
merged normally.

2. If the directory containing the file to be merged is listed in CONFIG_PROTECT_MASK, or is a
subdirectory of such a directory, or if the file is listed in CONFIG_PROTECT_MASK, the file is
merged normally.

3. If no existing file with the intended filename exists, or the existing file has identical content to
the one being merged, the file is installed normally.

4. Otherwise, prepend the filename with . _cfg0000_. If no file with the new name exists, then
the file is merged with this name.

| MTIME-PRESERVE

CHAPTER 13. MERGING AND UNMERGING 82

Table 13.2: Rewriting of absolute symlinks in EAPIs

EAPI Rewrite symlinks?
0,1,2,3,4,5,6,7,8 Yes
9 No

5. Otherwise, increment the number portion (to form ._cfg0001_<name>) and repeat step 4.
Continue this process until a usable filename is found.
6. If 9999 is reached in this way, behaviour is undefined.

13.4 Symlinks

Symlinks are merged as symlinks onto the filesystem. The link destination for a merged link shall
be the same as the link destination for the link under D, except as noted below. The method used
to perform the merge is not specified, so long as the end result is correct; in particular, merging a
symlink may alter or remove the symlink under D.

Ebuilds must not attempt to merge a symlink on top of a directory.

13.4.1 Rewriting

In EAPIs listed in table 13.2 as rewriting symlinks, any absolute symlink whose link target starts
with D must be rewritten with the leading D removed. The package manager should issue a notice
when encountering such a symlink. In all other EAPIs, symlinks must be merged with their targets
unmodified.

13.5 Hard links

A hard link may be merged either as a single file with links or as multiple independent files.

13.6 Other files

Ebuilds must not attempt to install any other type of file (FIFOs, device nodes etc).

’ SYMLINK-REWRITE

Chapter 14

Metadata cache

14.1 Directory contents

The metadata/cache or metadata/md5-cache directories, if either of them exists, contain direc-
tories whose names are the same as categories in the repository. Each subdirectory may optionally
contain one file per package version in that category, named <package>-<version>, in one of the
formats described below.

The metadata cache may be incomplete or non-existent, and may contain additional bogus entries.

14.2 Legacy cache file format

The legacy cache file format is used in the metadata/cache directory. Each cache file contains
the textual values of various metadata keys, one per line, in the following order. Other lines may be
present following these; their meanings are not defined here.

Build-time dependencies (DEPEND)

Run-time dependencies (RDEPEND)

Slot (SLOT)

Source tarball URIs (SRC_URI)

RESTRICT

Package homepage (HOMEPAGE)

Package license (LICENSE)

Package description (DESCRIPTION)

Package keywords (KEYWORDS)

Inherited eclasses (INHERITED)

. Use flags that this package respects (IUSE)

. Use flags that this package requires (REQUIRED_USE). Blank in some EAPISs; see table 7.2.

. Post dependencies (PDEPEND)

. Build-time dependencies for CBUILD host (BDEPEND). Blank in some EAPIs; see table 8.4.

. The ebuild API version to which this package conforms (EAPT)

Properties (PROPERTIES). In some EAPIs, may optionally be blank, regardless of ebuild meta-

data; see table 7.2.

17. Defined phases (DEFINED_PHASES). In some EAPIs, may optionally be blank, regardless of
ebuild metadata; see table 7.5.

18. Install-time dependencies (IDEPEND). Blank in some EAPIs; see table 8.4.

19. Blank lines to pad the file to 22 lines long

PN R W=

—_ = e = =

Future EAPIs may define new variables, remove existing variables, change the line number or format
used for a particular variable, add or reduce the total length of the file and so on. Any future EAPI that
uses this cache format will continue to place the EAPI value on line 15 if such a concept makes sense
for that EAPI, and will place a value that is clearly not a supported EAPI on line 15 if it does not.

83

CHAPTER 14. METADATA CACHE 84

14.3 md5-dict cache file format

The “md5-dict” cache file format is used in the metadata/md5-cache directory. Each cache file
contains <key>=<value> pairs, one per line, in arbitrary order. The keys are the same as those listed
in section 14.2 except the INHERITED key. In addition, keys _md5_ and _eclasses_ contain values
as defined below.

md5 The MDS5 checksum of the ebuild for the package version.

eclasses A list of name-checksum pairs for all eclasses directly or indirectly inherited by the
ebuild, in arbitrary order, where name is the eclass name and checksum is the MD5 check-
sum of the eclass. Pairs are separated from each other by single tab characters, as are name
and checksum in each pair.

All MDS5 checksums are computed and formatted as described in RFC 1321 [2].

Other keys may be present; their meanings are not defined here. Lines with an empty value can be
omitted.

Glossary

This glossary contains explanations of some of the terms used in this document whose meaning may
not be immediately obvious.

qualified package name A package name along with its associated category. For example,
app-editors/vimis a qualified package name.

stand-alone repository An (ebuild) repository which is intended to function on its own as the only,
or primary, repository on a system. Contrast with non-stand-alone repository below.

non-stand-alone repository An (ebuild) repository which is not complete enough to function on its
own, but needs one or more master repositories to satisfy dependencies and provide repository-
level support files. Known in Portage as an overlay.

master repository See above.

85

Bibliography

[1] Michat Gérny, Robin Hugh Johnson, and Ulrich Miiller. Full-tree verification using Manifest
files. GLEP 74, Gentoo Linux, October 2022. URL: https://www.gentoo.org/glep/glep-
0074 .html.

[2] Ronald L. Rivest. The MD5 message-digest algorithm. RFC 1321, RFC Editor, April 1992.
URL: https://wuw.rfc-editor.org/rfc/rfc1321.

[3] Michat Gérny. Package and category metadata. GLEP 68, Gentoo Linux, October 2022. URL:
https://www.gentoo.org/glep/glep-0068.html.

[4] Jason Stubbs. Virtuals deprecation. GLEP 37, Gentoo Linux, September 2006. URL: https:
//www.gentoo.org/glep/glep-0037.html.

[5] Piotr Jaroszynski. Use EAPI-suffixed ebuilds. GLEP 55, Gentoo Linux, May 2009. URL:
https://www.gentoo.org/glep/glep-0055.html.

86

https://www.gentoo.org/glep/glep-0074.html
https://www.gentoo.org/glep/glep-0074.html
https://www.rfc-editor.org/rfc/rfc1321
https://www.gentoo.org/glep/glep-0068.html
https://www.gentoo.org/glep/glep-0037.html
https://www.gentoo.org/glep/glep-0037.html
https://www.gentoo.org/glep/glep-0055.html

Appendix A

metadata.xml

The metadata.xml file is used to contain extra package- or category-level information beyond what
is stored in ebuild metadata. Its exact format is strictly beyond the scope of this document, and is
described in GLEP 68 [3].

87

Appendix B

Unspecified items

The following items are not specified by this document, and must not be relied upon by ebuilds. This
is, of course, an incomplete list—it covers only the things that the authors know have been abused in
the past.

L]

The FEATURES variable. This is Portage specific.

Similarly, any EMERGE_ variable and any PORTAGE_ variable.

Any Portage configuration file.

The VDB (/var/db/pkg). Ebuilds must not access this or rely upon it existing or being in
any particular format.

The portageq command. The has_version and best_version commands are available as
functions.

The emerge command.

Binary packages.

The PORTDIR_OVERLAY variable, and overlay behaviour in general.

88

Appendix C

Historical curiosities

C.1 Long-obsolete features

The items described in this section are included for information only. Unless otherwise noted, they
were deprecated or abandoned long before EAPI was introduced. Ebuilds must not use these features,
and package managers should not be changed to support them.

If-else USE blocks Historically, Portage supported if-else use conditionals, as shown by listing C.1.
The block before the colon would be taken if the condition was met, and the block after the
colon would be taken if the condition was not met.

CVS versions Portage has very crude support for CVS packages. The package foo could contain a
file named foo-cvs.1.2.3.ebuild. This version would order higher than any non-CVS ver-
sion (including foo-2.ebuild). This feature has not seen real world use and breaks versioned
dependencies, so it must not be used.

use.defaults The use.defaults file in the profile directory was used to implement ‘autouse’—
switching USE flags on or off depending upon which packages are installed. It was deprecated
long ago and finally removed in 2009.

C.2 Retroactive changes

In some exceptional cases, changes to the specification have been approved by the Gentoo Council
without introducing a new EAPI. This section lists such retroactive changes.

Bash version EAPIs 0, 1 and 2 originally specified GNU Bash version 3.0. This was retroactively
updated to version 3.2 (see table 6.1) in November 2009.

Old-style virtuals Historically, virtuals were special packages rather than regular ebuilds. An ebuild
could specify in the PROVIDE metadata that it supplied certain virtuals, and the package man-
ager had to bear this in mind when handling dependencies.

Old-style virtuals were supported by EAPIs 0, 1, 2, 3 and 4. They were phased out via
GLEP 37 [4] and finally removed in 2011.

Listing C.1 If-else use blocks

DEPEND="
flag? (
taken/if-true
) (
taken/if-false
)

89

APPENDIX C. HISTORICAL CURIOSITIES 90

Note: A ‘new-style virtual’ is a normal package that installs no files and uses its dependency
requirements to pull in a ‘provider’. This does not require any special handling from the
package manager.

EAPI parsing The method to specify the EAPI of an ebuild used to be a shell variable assignment,
and the package manager had to source the ebuild in order to determine the EAPI. There-
fore any ebuild using a future EAPI would still have to be sourceable by old package man-
agers, which imposed restrictions e. g. on updating the Bash version or on possible changes
of global scope functions. Several approaches to overcome this limitation were discussed,
notably GLEP 55 [5], which was ultimately rejected.

The current syntax of the EAPT assignment statement (see section 7.3.1), allowing the pack-
age manager to obtain the EAPI from the ebuild by a regular expression match and without
sourcing it, was introduced in May 2012.

Package names Previously, package names were only required not to end in a hyphen followed by
one or more digits. In October 2012 this was tightened to the specification in section 3.1.2,
namely that they must not end in a hyphen followed by anything resembling a package version.

Asterisk in dependency specification In the = dependency operator specified in section 8.3.1, an
asterisk used to induce string prefix comparison instead of the normal version compari-
son logic. That could lead to surprising results, e.g. =dev-lang/perl-5.2* matching
dev-lang/perl-5.22.0. Moreover, implementation in package managers deviated from
what was specified.

String prefix matching was effective in EAPIs 0, 1, 2, 3, 4 and 5. It was retroactively dropped
in favour of the current behaviour in October 2015.

Empty dependency groups The dependency specification format (see section 8.2) originally per-
mitted all-of, any-of, exactly-one-of, at-most-one-of and use-conditional groups with zero sub-
elements. However, such empty groups were neither supported by all package managers nor
used in ebuilds. They were dropped from the specification in October 2017.

econf --disable-static option The --disable-static option in econf (see section 12.3.8) was
intended to disable only static Libtool archive building. The original check for either
--disable-static or --enable-static occuring in configure --help output produced
false positives.

The test mentioned above was effective in EAPI 8. It was updated in November 2022 to require
both --enable-static and --enable-shared, and in addition checks for a proper end of
these option strings.

econf matches configure --help output better The simple string matching used for configure
--help output caused false positives for options like --with-sysroot. It was effective in
EAPIs 4, 5, 6, 7 and 8, and was updated in April 2023 to check for a proper end of string for
all option names beginning with with-, disable- or enable-.

Appendix D

Feature availability by EAPI

Note: This chapter is informative and for convenience only. Refer to the main text for specifics. For
lack of space, EAPIs O to 5 have been omitted from the table below, as well as items that would have
identical entries for all listed EAPIs.

Table D.1: Features in EAPIs

Feature Ref. EAPIs
6 7 8 9

package .mask directory p-19 No Yes Yes Yes
Less strict updates syntax p-21 No No Yes Yes
Default EAPI for profiles p-23 0 0 0 Top-level
Profile files as directories p-24 No Yes Yes Yes
package.provided p-25 Optional No No No
use.stable p-25 No No No Yes
package.use.stable p-25 No No No Yes
Bash version p.30 42 42 5.0 5.2
Selective URI restrictions p-33 No No Yes Yes
BDEPEND p.36 No Yes Yes Yes
IDEPEND p.-36 No No Yes Yes
Empty ||, =~ groups match ~ p.38 Yes No No No
Working dir in pkg_x* phases p.42 Any Any Empty Empty
src_prepare style p-44 6 6 8 8
Accumulate PROPERTIES p-50 No No Yes Yes
Accumulate RESTRICT p-50 No No Yes Yes
Export variables p-52 Yes Yes Yes No
PORTDIR p.-54 Yes No No No
ECLASSDIR p-54 Yes No No No
SYSROOT, ESYSROOT p.-54 No Yes Yes Yes
BROOT p.54 No Yes Yes Yes
DESTTREE p-55 Yes No No No
INSDESTTREE p-55 Yes No No No
ENV_UNSET p.57 No Yes Yes Yes
Trailing slash in D etc. p-59 Yes No No No
GNU patch version p.61 Any 2.7 2.7 2.7
nonfatal function/external p.62 No Yes Yes Yes
dohtml p.-62 Yes Banned Banned Banned
dolib p.62 Yes Banned Banned Banned
libopts p-62 Yes Banned Banned Banned
useq p-62 Yes Yes Banned Banned
hasv p.-62 Yes Yes Banned Banned
hasq p.-62 Yes Yes Banned Banned

91

APPENDIX D. FEATURE AVAILABILITY BY EAPI

Feature Ref. EAPIs
6 7 8 9

assert p-62 Yes Yes Yes Banned
domo p.-62 Yes Yes Yes Banned
Query command options p.-63 --host-root -b,-d,-r -b,-d,-r -b,-d,-r
Output commands use stdout p.63 Yes No No No
eqawarn p.-64 No Yes Yes Yes
die in subshell p.64 No Yes Yes Yes
pipestatus p.64 No No No Yes
econf --datarootdir p.66 No No Yes Yes
econf --with-sysroot p.66 No Yes Yes Yes
econf --disable-static p.66 No No Yes Yes
domo destination path p-70 ${DESTTREE} /usr /usr /usr
dosym -r p-70 No No Yes Yes
insopts affects misc.cmds p.72 Yes Yes No No
exeopts affects doinitd p-72 Yes Yes No No
Controllable stripping p-73 No Yes Yes Yes
dostrip p-73 No Yes Yes Yes
usev second arg p.-74 No No Yes Yes
ver _* commands p-75 No Yes Yes Yes
ver_replacing p.76 No No No Yes
unpack support for 7z p-76 Yes Yes No No
unpack support for 1ha p-76 Yes Yes No No
unpack support for rar p.-76 Yes Yes No No
edo p.-78 No No No Yes

Absolute symlink rewriting p-82 Yes Yes Yes No

Appendix E

Differences between EAPIs

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.

EAPI O

EAPI 0 is the base EAPI.

EAPI 1

EAPI 1 is EAPI 0 with the following changes:

* TUSE defaults, IUSE-DEFAULTS on page 32.
* Slot dependencies, SLOT-DEPS on page 40.
* Different src_compile implementation, SRC-COMPILE on page 45.

EAPI 2

EAPI 2 is EAPI 1 with the following changes:

e SRC_URI arrows, SRC-URI-ARROWS on page 33.

» Use dependencies, USE-DEPS on page 39.

e ! and !! blockers, BANG-STRENGTH on page 40.

* src_prepare, SRC-PREPARE on page 44.

* src_configure, SRC-CONFIGURE on page 44.

* Different src_compile implementation, SRC-COMPILE on page 45.

e default_ phase functions for phases pkg_nofetch, src_unpack, src_prepare, src_
configure, src_compile and src_test; DEFAULT-PHASE-FUNCS on page 48.

* doman language detection by filename, DOMAN-LANGS on page 70.

* default function, DEFAULT-FUNC on page 78.

EAPI 3

EAPI 3 is EAPI 2 with the following changes:

» Offset-prefix support by definition of EPREFIX, ED and EROOT, OFFSET-PREFIX-VARS on
page 58.

* unpack supports .xz and .tar.xz, UNPACK-EXTENSIONS on page 76.

* File modification times are preserved, MTIME-PRESERVE on page 81.

93

APPENDIX E. DIFFERENCES BETWEEN EAPIS 94

EAPI 4

EAPI 4 is EAPI 3 with the following changes:

e REQUIRED_USE, REQUIRED-USE on page 32.

* PROPERTIES support is mandatory, PROPERTIES on page 32.

* RDEPEND=DEPEND no longer done, RDEPEND-DEPEND on page 34.

* DEFINED_PHASES support is mandatory, DEFINED-PHASES on page 35.

» Use dependency defaults, USE-DEP-DEFAULTS on page 41.

* S to WORKDIR fallback restricted, S-WORKDIR-FALLBACK on page 42.

* pkg_pretend, PKG-PRETEND on page 42.

e Default src_install no longer a no-op, SRC-INSTALL on page 46.

* pkg_info can run on non-installed packages, PKG-INFO on page 47.

e AAis gone, AA on page 53.

e KV is gone, KV on page 56.

e MERGE_TYPE, MERGE-TYPE on page 56.

e REPLACING_VERSIONS and REPLACED_BY_VERSION, REPLACE-VERSION-VARS on page 58.

« Utilities now die on failure, DIE-ON-FAILURE on page 62, unless called under nonfatal,
NONFATAL on page 62

* dohard, dosed banned, BANNED-COMMANDS on page 62.

* econf adds --disable-dependency-tracking, ECONF-OPTIONS on page 66.

* dodoc -r support, DODOC on page 68.

* doins supports symlinks, DOINS on page 69.

* doman -1i18n option takes precedence, DOMAN-LANGS on page 70.

 Controllable compression and docompress, DOCOMPRESS on page 73.

* use_with and use_enable support empty third argument, USE-WITH on page 74.

EAPI 5

EAPI 5 is EAPI 4 with the following changes:

 Stable use masking and forcing, STABLEMASK on page 26.

* REQUIRED_USE now supports ?7 groups, AT-MOST-ONE-OF on page 38.

* Slot operator dependencies, SLOT-OPERATOR-DEPS on page 40.

¢ SLOT now supports an optional sub-slot part, SUB-SLOT on page 40.

* src_test supports parallel tests, PARALLEL-TESTS on page 46.

* EBUILD_PHASE_FUNC, EBUILD-PHASE-FUNC on page 56.

* USE is calculated differently, PROFILE-IUSE-INJECT on page 58.

e find is guaranteed to be GNU, GNU-FIND on page 61.

* best_version and has_version support the --host-root option, PM-QUERY-OPTIONS
on page 63.

* econf adds --disable-silent-rules, ECONF-OPTIONS on page 66.

* doheader and newheader support, DOHEADER on page 69.

* newx* can read from standard input, NEWFOO-STDIN on page 70.

* usex support, USEX on page 74.

EAPI 6

EAPI 6 is EAPI 5 with the following changes:

* Bash version is 4.2, BASH-VERSION on page 30.

e failglob is enabled in global scope, FAILGLOB on page 30.

* Default src_prepare no longer a no-op, SRC-PREPARE on page 44.

* Different src_install implementation, SRC-INSTALL on page 46.

e LC_CTYPE and LC_COLLATE compatible with POSIX locale, LOCALE-SETTINGS on page 57.
e einstall banned, BANNED-COMMANDS on page 62.

* die and assert called with -n respect nonfatal, NONFATAL-DIE on page 64.

APPENDIX E. DIFFERENCES BETWEEN EAPIS 95

eapply support, EAPPLY on page 65.

eapply_user support, EAPPLY-USER on page 65.

econf adds --docdir and --htmldir, ECONF-OPTIONS on page 66.

in_iuse support, IN-IUSE on page 74.

unpack supports absolute and relative paths, UNPACK-ABSOLUTE on page 76.

unpack supports .txz, UNPACK-EXTENSIONS on page 76.

unpack matches filename extensions case-insensitively, UNPACK-IGNORE-CASE on page 77.
einstalldocs support, EINSTALLDOCS on page 78.

get_libdir support, GET-LIBDIR on page 78.

EAPI 7

EAPI 7 is EAPI 6 with the following changes:

L]

L]

profiles/package.mask can be a directory, PACKAGE-MASK-DIR on page 19.

package .mask, package.use, use.* and package.use.* in a profile can be directories,
PROFILE-FILE-DIRS on page 24.

package.provided in profiles banned, PACKAGE-PROVIDED on page 25.

Empty | | and =~ dependency groups no longer count as being matched, EMPTY-DEP-GROUPS
on page 38.

PORTDIR is gone, PORTDIR on page 54.

ECLASSDIR is gone, ECLASSDIR on page 54.

DESTTREE is gone, DESTTREE on page 55.

INSDESTTREE is gone, INSDESTTREE on page 55.

ROOT, EROOT, D, ED no longer end with a trailing slash, TRAILING-SLASH on page 59.
SYSROOT and ESYSROOT, SYSROOT on page 54.

econf adds --with-sysroot, ECONF-OPTIONS on page 66.

BDEPEND, BDEPEND on page 36.

BROOT, BROOT on page 54.

best_version and has_version support -b, -d and -r options instead of --host-root,
PM-QUERY-OPTIONS on page 63.

ENV_UNSET, ENV-UNSET on page 57.

patch is compatible with GNU patch 2.7, GNU-PATCH on page 61.

nonfatal is both a shell function and an external command, NONFATAL on page 62.

dohtml banned, BANNED-COMMANDS on page 62.

dolib and libopts banned, BANNED-COMMANDS on page 62.

Output commands no longer use stdout, OUTPUT-NO-STDOUT on page 63.

eqawarn, EQAWARN on page 64.

die is guaranteed to work in a subshell, SUBSHELL-DIE on page 64.

domo installs to /usr, DOMO-PATH on page 70.

Controllable stripping and dostrip, DOSTRIP on page 73.

Version manipulation and comparison commands, VER-COMMANDS on page 75.

EAPI 8

EAPI 8 is EAPI 7 with the following changes:

Less strict naming rules for files in updates directory, UPDATES-FILENAMES on page 21.
Bash version is 5.0, BASH-VERSION on page 30.

Selective fetch/mirror restriction, URI-RESTRICT on page 33.

IDEPEND, IDEPEND on page 36.

Empty working directory in pkg_x* phase functions, PHASE-FUNCTION-DIR on page 42.
Different src_prepare implementation, SRC-PREPARE on page 44.

PROPERTIES and RESTRICT accumulated across eclasses, ACCUMULATE-VARS on page 50.
useq banned, BANNED-COMMANDS on page 62.

hasv and hasq banned, BANNED-COMMANDS on page 62.

APPENDIX E. DIFFERENCES BETWEEN EAPIS 96

* econf adds --datarootdir, ECONF-OPTIONS on page 66.

* econf adds --disable-static, ECONF-OPTIONS on page 66.

* dosym can create relative paths, DOSYM-RELATIVE on page 70.

* insopts no longer affects doconfd, doenvd and doheader, INSOPTS on page 72.
* exeopts no longer affects doinitd, EXEOPTS on page 72.

* usev supports an optional second argument, USEV on page 74.

* unpack no longer supports .7z, .rar, .1lha, UNPACK-EXTENSIONS on page 76.

EAPI 9

EAPI 9 is EAPI 8 with the following changes:

¢ Different default EAPI for profiles, PROFILE-EAPI-DEFAULT on page 23.
* use.stable and package.use.stable, USE-STABLE on page 25.

* Bash version is 5.2, BASH-VERSION on page 30.

* Variables no longer exported, EXPORT-VARS on page 52.

* assert banned, BANNED-COMMANDS on page 62.

* domo banned, BANNED-COMMANDS on page 62.

* pipestatus, PIPESTATUS on page 64.

* ver_replacing, VER-REPLACING on page 76.

* edo, EDO on page 78.

* Absolute symlinks no longer rewritten, SYMLINK-REWRITE on page 82.

/0"¥/es-Aq/S8sud2l|/B10°SUOWIIODBAIERSID//:SANY ,
uoneoyoads Iabeur|yebeMoRd:108[01d/niM/B10"00)LBH M/ SARY |

"¢ 9bed uo sd1a-3714-311404Hd pue
61 obed uo dIa-MSYW-IDVYMOVd 883 ‘Aluo sAejieno uj
pasn aq 0} papuslul SI SIY| “Sa|1} Jeinbau Jo peslsul $a110}
-08.Ip 8q ued S9|l} 9|yoid 8say| * "Osn pue x - bHeyoed

sabueyo/suonippy

(0e-¥0-8102) £ IdV3

"S|dV'3 @Sey] usamiaq SeouaIalp J0) JUsWn
-00p SIY} JO SuoISIaA snoireid 88g “eoedS J0 ¥oe| 40} paliWQ

9 01 0 SIdv3

Z ©0UBI|| [RUOBUIBIUI 01 SYIIYSIeyS-UuoiNquIY
SUOWIWOYD BAlBaID By} Japun pasesjal S| YIom Syl

“JUSWNO0P SIY} SE IN0XI8Yd SWES

Y} woJj }Ing ‘yasy uoneoyoads Jabeuely abexoed syl 0}

Jajal sjage| IV ‘1dV¥3 snoiaaid ay) se awes 8y} SI |dy3

ue ‘pajou asimiaylo alaym 1deoxg (" ‘g ‘I ‘o) sieba)
-ul paJaquinu A|9AIINOBSUOD 8JB S|dYJ 00IUSY) [BIOILO

‘Aluo Arewwns a}g/dwodul

ue si sy} | ‘ebed j0efoid sy} uo puno} uoneoyads sebe

-uep\ abexoed 8yl JNSuo9 ‘s|ielap ||} Jo4 ‘sioyine pjinge
10} ‘oojuan) Ul sabueyd |dy3 Ulew 8y} JO MBIAIBAO Uy

108015qY

Gco0c aunrisie
0°6 UOISIBOA

Bi0 00usb@WIN
BN YduIN

Bio-00usb@Ine}
Jawweyneq uensuyo

198yS 1eayD IdVv4

'29 obed uo SANVIWNOO-AINNYE 89S “Juswade|dal
SB SUTMSU pUB OQUTSUT 8S() "pamo|e Jobuo| oN owop

"29 obed uo SANVIWWOO-AINNVE 89S
‘pesisul snieasadtd asn ‘pamoje jobuo| ON JaOsse

sueq/s|eAoway

‘28 obed Uo ILIYMIL-MNITNAS 993
'sjobuel yul s1oyl woly g Buipes) e duis 1obuo| ou [Im
Jabeuew abexyoed ay] -si-se pablaw mou ase SHUIJWAS
alnjosge ‘1004 0} d Buibiaw usypy syuljwAs jo buibiap

-g/ ebed uo 0a3 883 InoINBYSQ BIN|IB} PIBPUBIS YlIM
‘puBIWOD ||8ys 8|dwis B Se 1l SaIndaxa usy} ‘ebessaw
|[euonewuojul ue se isi| juswnbie aijus s} sindinQ opa

‘9/ ebed uo DNIOV1d3H-HIA 98
'1s93” 194 Aq paldadoe si jey Jojesado Aue aq ued do
‘SNOISYHA ONIDVTAHY JO LA Juswsld Aue Joj ani s
gn do [A uonejal 8yl il soayD ga do butoeTdsx aoa

"9 obed uo snN.ivLSIdid 993 ‘Aeue
sniels adid s |jays ay) siuld osje ‘paiioads si uoido A—
83U} UBYA\\ "0J48Z JO sniels 1ixa ue pauinial aaey suiadid
palNoaxa 1Se| 8yl Ul SpUBWIWIOD ||E §I Soay) snielsadtd

'2G 9bed uo SHVYA-LHOdX3 995 "sBujueaw a1j10ads aney
leyl s TNeISP o3 BW Ul pauldp Ss|qelea o0} sajdde
SWES 8y "JUSWUOIIAUS 8U} O} (HIWOH pue IIddWL aJe
Su01daoxa) sajqelIeA |[9ys paulep s suodxa Jabuoj ou
Jabeuew abexoed ay] papodxa Jabuo] ou ale sajqeliep

‘0¢ obed uo NOISHIA-HSVE 885 *(810}0Q 0°G Sem)
2’G UOISIaA yseq JO sainjea) 8sn UeD Sp|iNgg UOISIaA yseg

"Gz ebed uo 37av1S-3SN 983 "plomhoy

a|gels e 0} anp pabiaw aq pjnom jeyl sebexoed uo Ajuo

1B Inq ‘saTneIsp - oxew Aq payoads sbejy 35N 8yl

BplIIBA0 0] pasn aq ued Aay | "S8|i} MU OM] UIBIU0D AW
slp 9|jold ©Tqe3s - asn-abeyoed pue aTqels - asn

‘e abed uo 1INY43Q-1dv3-311404d 89S

‘f101004p soTTI0xd |oagl-do) ay) ul payoads |dv3

ayl 0} Ing ‘0 |dv3 o1 Ynejep Jebuo| ou ojiy Tdes umo
J1ay} Inoyum sauoloauIp BoId sajiyold 1oy |V Hneyeq

sobueyo/suonippy

6 1dv3

'9/ obed uo SNOISNILXI-MOVANN 88S "SOAIYIIE YH
pue ‘Yyy ‘diz-7 jo bupoedun sjioddns Jebuoj oN 3joedun

'29 abed uo SANYININOD-AINNYE 89S "pealsul pasn aq
pinoys sey Jeinbay ‘pamoje Jabuo| oN bsey pue asey

'29 obed uo SANYINNOD-AINNYE 88S "Juswade|dal
ul-doip e se ssn Jenbas asn ‘pamoje Jabuo| oN beasn

sueq/s|eAroway

't/ 8bed uo A3sn 88g -Buiyiou sindino
asImIBaylQO uswnbie auo Ajuo yum pajeo i sweu s,6ej)
ay1 .o ‘[enuy] sindino ‘}as si Bey ayl y| [ens)] <bey> nasn
:mou juswnbie puodss [euondo ue sey Jadjgy siy] assn

| | and ~* dependency groups These groups now eval-
uate to false when they are empty (for example, if there
are only unmatched use dependencies inside of them).
See EMPTY-DEP-GROUPS on page 38.

No trailing slash The paths specified by ROOT, EROOT,
D, and ED no longer end with a slash. Thus, default
ROOT is empty now. See TRAILING-SLASH on page 59.

Cross compilation support Several variables have been
added and some commands have been extended for
better cross compilation support:

BDEPEND Build dependencies are divided into two
classes: BDEPEND for native build tools (CBUILD);
DEPEND for dependencies compatible with the sys-
tem being built (CHOST). See BDEPEND on page 36.

SYSROOT The path to the root directory for DEPEND
type dependencies. See SYSROOT on page 54.

ESYSROOT The concatenation of SYSROOT and the
applicable offset-prefix. See SYSROOT on page 54.

BROOT The prefixed root directory path for BDEPEND
type dependencies, typically executable build tools.
See BROOT on page 54.

econf If supported, configure will be called with the
——with-sysroot=${ESYSROOT:—-/} option.
See ECONF-OPTIONS on page 66.

has_version and best_version These helpers
support -b, —d or —r options, causing the query
to apply to BDEPEND, DEPEND or RDEPEND (the
default). This replaces the ——host-root option.
See PM-QUERY-OPTIONS on page 63.

Environment blacklist Any environment variable listed in
the profile-defined ENV_UNSET variable will be unset
by the package manager. See ENV-UNSET on page 57.

patch All inputs valid for GNU patch version 2.7 are sup-
ported. Especially, this includes support for git-formatted
patches. See GNU-PATCH on page 61.

nonfatal In addition to its definition as a shell function,
the nonfatal wrapper has now a fallback implemen-
tation as an external command. Thus, it can be called
from other commands. See NONFATAL on page 62.

Output commands einfo and friends no longer use std-
out, so inside of command substitution their output won’t
be caught. See OUTPUT-NO-STDOUT on page 63.

egawarn The egawarn output command is supported in
the package manager itself. See EQAWARN on page 64.

die in subshell The die command is guaranteed to work
in a subshell context. See SUBSHELL-DIE on page 64.

domo destination domo installs the specified files under
/usr/share/locale instead of ${DESTTREE}/
share/locale. See DOMO-PATH on page 70.

Controllable stripping The dostrip —-x command can
be used to add paths to an exclusion list for stripping of
debug symbols, to allow more fine-grained control than
with RESTRICT="strip". See DOSTRIP on page 73.

Version manipulation and comparison commands

ver_cut range [version] Print the version substring
specified by range. version defaults to PV.

ver_rs range repl ... [version] Replace all version
separators in range by string repl. Multiple range
repl pairs are allowed. version defaults to PV.

ver_test [v1] op v2 Check if the relation vi op v2is
true. v1 defaults to PVR; op can be —eq, —ne, —gt,
—-ge, —lt or —le.

See VER-COMMANDS on page 75.

Removals/bans

package.provided Deprecated since a long time and
finally dropped. See PACKAGE-PROVIDED on page 25.

PORTDIR and ECLASSDIR No longer defined, because
ebuilds should not directly access files in the repository.
See PORTDIR on page 54 and ECLASSDIR on page 54.

DESTTREE and INSDESTTREE Not defined any more.
Use the into and insinto commands instead. See
DESTTREE on page 55 and INSDESTTREE on page 55.

dohtml No longer allowed. doins -r can be used as a
replacement. See BANNED-COMMANDS on page 62.

dolib and 1ibopts No longer allowed. The specific
dolib.a or dolib.so commands should be used
as replacement. See BANNED-COMMANDS on page 62.

EAPI 8 (2021-06-13)

Additions/changes

profiles/updates directory Arbitrary filenames are
now allowed, instead of strict naming by quarters (like
2Q-2021). See UPDATES-FILENAMES on page 21.

Bash version Ebuilds can use features of Bash version 5.0
(was 4.2 before). See BASH-VERSION on page 30.

Selective fetch/mirror restriction In SRC_URT, adding a
fetch+ormirror+ prefix to anindividual URI means
that the file may be fetched or mirrored. This overrides
the corresponding global settings in the RESTRICT
variable. See URI-RESTRICT on page 33.

IDEPEND This variable specifies install-time dependen-
cies on packages used in (e.g.) pkg_postinst.Ina
cross-compilation environment, these are dependencies
for native tools (CBUILD). See IDEPEND on page 36.

pkg_* phases The initial working directory is guaranteed
to be empty. See PHASE-FUNCTION-DIR on page 42.

src_prepare ltems in the PATCHES variable are inter-
preted as files, even if their name begins with a hyphen.
See SRC-PREPARE on page 44.

PROPERTIES and RESTRICT These variables are accu-
mulated across the ebuild and inherited eclasses, like
IUSE, REQUIRED_USE, and *DEPEND were before.
See ACCUMULATE-VARS on page 50.

econf If supported, options ——disable-static and
——datarootdir=${EPREFIX}/usr/share are
passed to configure, respectively. See ECONF-OPTIONS
on page 66.

dosym With the new option —r, an absolute path specified
for the link target will be converted to a path relative to
the link location. See DOSYM-RELATIVE on page 70.

insopts Commands doconfd, doenvd, doheader
install files with fixed mode 0644, i. e. they are no longer
affected by insopts. See INSOPTS on page 72.

exeopts Command doinitd installs files with fixed
mode 0755, i.e. it is no longer affected by exeopts.
See EXEOPTS on page 72.

	Introduction
	Aims and motivation
	Rationale
	Reporting issues
	Conventions
	Acknowledgements

	EAPIs
	Definition
	Defined EAPIs
	Reserved EAPIs

	Names and versions
	Restrictions upon names
	Category names
	Package names
	Slot names
	USE flag names
	Repository names
	Eclass names
	License names
	Keyword names
	EAPI names

	Version specifications
	Version comparison
	Uniqueness of versions

	Tree layout
	Top level
	Category directories
	Package directories
	The profiles directory
	The profiles.desc file
	The thirdpartymirrors file
	use.desc and related files
	The updates directory

	The licenses directory
	The eclass directory
	The metadata directory
	The metadata cache

	Profiles
	General principles
	Files that make up a profile
	The parent file
	The eapi file
	deprecated
	make.defaults
	Simple line-based files
	packages
	packages.build
	package.mask
	package.provided
	package.use
	use.stable and package.use.stable
	USE masking and forcing

	Profile variables
	Incremental variables
	Specific variables and their meanings

	Ebuild file format
	Ebuild-defined variables
	Metadata invariance
	Mandatory ebuild-defined variables
	Optional ebuild-defined variables
	EAPI
	SRC_URI
	Keywords
	USE state constraints
	Properties
	Restrict
	RDEPEND value

	Magic ebuild-defined variables

	Dependencies
	Dependency classes
	Dependency specification format
	All-of dependency specifications
	USE-conditional dependency specifications
	Any-of dependency specifications
	Exactly-one-of dependency specifications
	At-most-one-of dependency specifications

	Package dependency specifications
	Operators
	Block operator
	Slot dependencies
	2-style and 4-style USE dependencies

	Ebuild-defined functions
	List of functions
	Initial working directories
	pkg_pretend
	pkg_setup
	src_unpack
	src_prepare
	src_configure
	src_compile
	src_test
	src_install
	pkg_preinst
	pkg_postinst
	pkg_prerm
	pkg_postrm
	pkg_config
	pkg_info
	pkg_nofetch
	Default phase functions

	Call order

	Eclasses
	The inherit command
	Eclass-defined metadata keys
	EXPORT_FUNCTIONS

	The ebuild environment
	Defined variables
	USE and IUSE handling
	REPLACING_VERSIONS and REPLACED_BY_VERSION
	Offset-prefix variables
	Path variables and trailing slash

	The state of variables between functions
	The state of the system between functions

	Available commands
	System commands
	Guaranteed system commands

	Commands provided by package dependencies
	Ebuild-specific commands
	Failure behaviour and related commands
	Banned commands
	Sandbox commands
	Package manager query commands
	Output commands
	Error commands
	Patch commands
	Build commands
	Installation commands
	Commands affecting install destinations
	Commands controlling manipulation of files in the staging area
	USE list functions
	Text list functions
	Version manipulation and comparison commands
	Misc commands
	Debug commands
	Reserved commands and variables

	Merging and unmerging
	Overview
	Directories
	Permissions
	Empty directories

	Regular files
	Permissions
	File modification times
	Configuration file protection

	Symlinks
	Rewriting

	Hard links
	Other files

	Metadata cache
	Directory contents
	Legacy cache file format
	md5-dict cache file format

	Glossary
	Bibliography
	metadata.xml
	Unspecified items
	Historical curiosities
	Long-obsolete features
	Retroactive changes

	Feature availability by EAPI
	Differences between EAPIs
	Desk reference

