Package Manager Specification

Stephen P. Bennett Christian Faulhammer
spb@exherbo.org fauli @gentoo.org
Ciaran McCreesh Ulrich Miiller
ciaran.mccreesh @ googlemail.com ulm @ gentoo.org

30th April 2018

mailto:spb@exherbo.org
mailto:fauli@gentoo.org
mailto:ciaran.mccreesh@googlemail.com
mailto:ulm@gentoo.org

The bulk of this document is () 2007-2018 Stephen Bennett, Christian Faulhammer, Ciaran McCreesh and
Ulrich Miiller. Contributions are owned by their respective authors, and may have been changed substantially
before inclusion.

This document is released under the Creative Commons Attribution-ShareAlike 3.0 Licence. The full text of
this licence can be found at http://creativecommons.org/licenses/by-sa/3.0/.

This version corresponds to commit 78bf8ab.

http://creativecommons.org/licenses/by-sa/3.0/

Contents

Introduction

1.1 Aims and Motivation e
1.2 Rationale e
1.3 ReportingIssues. e
1.4 Conventions v i i i e e e e e e e e e e e e e e e
1.5 Acknowledgements
EAPIs

2.1 Definition e e e e e e e
22 Defined EAPIs e
23 Reserved EAPIs oo

Names and Versions

3.1 RestrictionsuponNames L o
31,1 Category names u e e e e e e e e e e e e e
3.1.2 Packagenameso
3.1.3 Slotnames
3.1.4 USEflagnames o vt e e
3.1.5 Repositorynameso
3.1.6 License nameso i e e e
3.1.7 Keywordnames e
3.1.8° EAPInames
3.2 Version Specifications e e
3.3 Version Comparison oot i i e e e e e e e e e
34 Uniquenessof Versions L e
Tree Layout
41 TopLevel e
4.2 Category Directorieso
4.3 Package Directories e
44 TheProfiles Directory
4.4.1 Theprofilesdescfile
4.42 The thirdpartymirrorsfile
443 usedescandrelatedfiles Lo oL
444 Theupdates directory
4.5 TheLicenses Directory e
4.6 TheEclassDirectory e
47 The Metadata Directory e
47.1 Themetadatacache
Profiles
5.1 General Principles
5.2 Files That MakeupaProfile
5.2.1 Theparentfile
522 Theeapifile.
5.2.3 deprecated e e

11
11
11
11
12
12

13
13
13
13

14
14
14
14
14
14
15
15
15
15
15
15
15

18
18
18
19
19
20
20
21
21
21
21
22
22

CONTENTS

53

524 makedefaults
5.2.5 Simpleline-based files
5.2.6 packages . . oL ... e e e
5.277 packagesbuild
5.2.8 packagemask
529 package.provided
5.2.10 packageuse
5.2.11 USE masking and forcing
Profile Variables o
5.3.1 Incremental variables
5.3.2 Specific variables and their meanings

6 Ebuild File Format

7 Ebuild-defined Variables

7.1 Metadata Invarianceo
7.2 Mandatory Ebuild-defined Variables
7.3 Optional Ebuild-defined Variables
7.3.1 EAPIL . . .
732 Keywordso
733 RDEPENDvalue

7.4 Magic Ebuild-defined Variables 0oL

8 Dependencies

8.1 Dependency Classes o v i i i i e e e
8.2 Dependency Specification Format 0.
8.2.1 All-of dependency specifications

8.2.2 USE-conditional dependency specifications

8.2.3 Any-of dependency specifications

8.2.4 Exactly-one-of dependency specifications

8.2.5 At-most-one-of dependency specifications

8.2.6 Package dependency specifications
8.2.6.1 Operators

8.2.6.2 Blockoperator

8.2.6.3 Slotdependencies

8.2.6.4 2-style and 4-style USE dependencies

8.277 USEstateconstraints oot vt e

8.2.8 Restrict
8.2.9 Properties
82.10 SRC_URI e

9 Ebuild-defined Functions

9.1 Listof Functions
9.1.1 Initial working directories Lo oL

9.1.2 pkg pretend. e
9.1.3 pkg setup
9.1.4 src_unpack
9.1.5 SIC_Prepare oo i e e e e e e
9.1.6 src_configure L.
9.1.7 src_compileo
9.1.8 src_test
9.1.9 src_install e
9.1.10 pkg_preinst
9.1.11 pkg_postinSt
9.1.12 pKE_prerm L. e e e e e e e
9.1.13 pKE_PoStrm oL e e e e e
9.1.14 pkg config
9.1.15 pkginfo
9.1.16 pkg_nofetch.

24
24
24
25
25
25
25
25
27
27
27

29

30
30
30
30
31
32
32
33

34
34
35
35
36
36
36
36
37
37
37
38
38
39
39
39
40

CONTENTS

9.1.17 Default phase functions Lo

9.2 Call Order

10 Eclasses

10.1 Theinherit Command e

10.2 Eclass-defined Met

adataKeys

10.3 EXPORT_FUNCTIONS e

11 The Ebuild Environment

11.1 Defined Variables

11.1.1 USEandIUSEhandling
11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION
11.1.3 Offset-prefix variables
11.1.4 Path variables and trailingslash

11.2 The State of Variab

les Between Functions

11.3 The State of the System Between Functions

12 Available Commands
12.1 System Commands

12.1.1 Guaranteed systemcommandso
12.2 Commands Provided by Package Dependencies
12.3 Ebuild-specific Commands

12.3.1 Failure beh

aviour and related commands

12.3.2 Bannedcommands
12.3.3 Sandbox commands
12.3.4 Package manager query commands L.
12.3.5 Outputcommands
12.3.6 Errorcommands
12.3.7 Patchcommands e
12.3.8 Buildcommands

12.3.9 Installation
12.3.10 Commands
12.3.11 Commands

commands
affecting install destinations
controlling manipulation of files in the staging area

123,12 USE list functions e
12.3.13 Text list functions e

12.3.14 Version ma

nipulation and comparison commands

123 15Misccommands e e e
12.3.16 Debug commands
12.3.17 Reserved commands and variables

13 Merging and Unmerging

13.1 Overview
13.2 Directories. . . .

13.2.1 Permissions v v it e e e e e e
13.2.2 Empty directories o v i e e e e e e

13.3 Regular Files . .

13.3.1 PermiSsions e e e
13.3.2 File modification times e

13.3.3 Configurati
13.4 Symlinks
13.4.1 Rewriting
13.5 Hard Links . . .
13.6 Other Files . . .

14 Metadata Cache
14.1 Directory Contents
14.2 Cache File Format

15 Glossary

onfile protection Lo

47
47

49
49
49
49

51
51
56
57
58
58
58
59

60
60
60
61
61
61
61
61
62
62
63
63
65
67
71
71
72
73
73
74
76
77

78
78
78
78
78
79
79
79
79
80
80
80
80

81
81
81

82

CONTENTS

Bibliography

A

B

C

metadata.xml
Unspecified Items

Historical Curiosities

Long-obsolete Features e
If-else USEblocks
CVS versions o e e e
use.defaults

Retroactive Changes e
Bashversion.
Old-style virtuals e
EAPIparsing e
Packagenames L
Asterisk in dependency specificationo
Empty dependency groupso

Feature Availability by EAPI

Differences Between EAPIs

Desk Reference

83

84

85

86
86
86
86
86
87
87
87
87
87
87
87

88

93
93
93
93
93
94
94
94
95

97

List of Algorithms

3.1
3.2
33
34
35
3.6
3.7
5.1
12.1
12.2
12.3
12.4
12.5

Version comparison top-level logic oL 16
Version comparison logic for numeric components 16
Version comparison logic for each numeric component after the first 16
Version comparison logic for letter components 16
Version comparison logic for suffixes 17
Version comparison logic foreach suffix 17
Version comparison logic for revision components 17
USEmasking logic e 26
eapplylogic 64
econf --libdirlogic. 66
Determining the library directory oL oo 69
einstalldocslogic L 76
get_libdirlogic 77

List of Listings

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
10.1
11.1
12.1
C.1

SIC_UNPACK . . .t i e e e e e e 42
src_prepare,format6. 43
src_configure 43
src_compile,formatO. L 44
src_compile,format 1. 44
src_compile,format2. 44
src_install,format4d e 45
src_install,format6. 45
EXPORT_FUNCTIONS example: foo.eclass 50
Environment state between functions 59
einstallcommand e 67
If-elseuse blocks 86

List of Tables

4.1

5.1
52
53
54
55

6.1

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

11.1
11.2
11.3
11.4
11.5
11.6
11.7

12.1
12.2
12.3
12.4

EAPIs supporting a directory for package.mask 20
EAPIs supporting directories for profile files 24
EAPIs supporting package.providedinprofiles 25
Profile directory support for masking/forcing use flags in stable versionsonly 26
Profile-defined IUSE injection for EAPIs 27
Profile-defined unsetting of variablesin EAPIs 27
Bash versionand options L oL 29
EAPIs supporting TUSEdefaults 31
EAPIs supporting various ebuild-defined variables 31
EAPIs with RDEPEND=DEPEND default 32
EAPIs supporting DEFINED_PHASES 33
Dependency classes required to be satisfied for a particular phase function 34
Summary of other interfaces related to dependency classes 35
EAPIs supporting additional dependency types 35
EAPIs supporting SRC_URL arrOWS . . . « . v v v v v o v e e e e e e e e e e e e 36
EAPIs supporting REQUIRED_USE 77 Zroups ¢« v v v v v v v v v v . 36
Matching of empty dependency groupsin EAPIs 36
Support for SLOT dependencies and sub-slots in EAPIs 37
EAPIs supporting USE dependencies 37
Exclamation mark strengths for EAPIs 38
EAPIs with S to WORKDIR fallbacks 42
EAPIs supporting pkg_pretendo 42
src_prepare support and behaviour for EAPIs 43
EAPIs supporting src_configure L oL 43
src_compile behaviour for EAPIs 44
src_test behaviourfor EAPIs 45
src_install behaviourfor EAPIs 45
EAPIs supporting pkg_info on non-installed packages 47
EAPIs supporting default_ phase functions 47
Defined variables L 52
EAPIs supporting various added env variables 56
EAPIs supporting various removed env variables 56
EAPIs supporting offset-prefix env variables 56
Locale settings for EAPIs 57
EAPIs supporting offset-prefix 58
Variables that always or never end with a trailingslash 58
System commands for EAPIs 60
EAPI command failure behaviour 61
Bannedcommands 62
Package manager query command options supported by EAPIs 62

LIST OF TABLES 10

12.5

12.6

12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22

13.1

D.1

Output commands for EAPIs 63
Properties of die and assert commands in EAPIs 63
Patchcommands for EAPIs 65
Extra econf arguments for EAPIs 0oL, 66
EAPIs supporting dodoc -r 70
EAPIs supporting doheader and newheader 70
EAPIs supporting symlinks fordoins L. 70
doman language support options for EAPIs 70
EAPIs supporting stdin for newx commands 70
domo destination pathin EAPIs L. 70
Commands controlling manipulation of files in the staging area in EAPIs 72
EAPI behaviour for use queries not in IUSE_EFFECTIVE 73
EAPIs supporting empty third argument in use_with and use_enable 73
EAPIs supportingusexandin_iuse, 73
EAPIs supporting version manipulation commands 74
unpack behaviour for EAPIs o 76
unpack extensions for EAPIs o oL 76
Misc commands for EAPIs o o L. 77
Preservation of file modification times (mtimes) 79

Featuresin EAPIs 89

Chapter 1

Introduction

1.1 Aims and Motivation

This document aims to fully describe the format of an ebuild repository and the ebuilds therein, as
well as certain aspects of package manager behaviour required to support such a repository.

This document is not designed to be an introduction to ebuild development. Prior knowledge of
ebuild creation and an understanding of how the package management system works is assumed;
certain less familiar terms are explained in the Glossary in chapter 15.

This document does not specify any user or package manager configuration information.

1.2 Rationale

At present the only definition of what an ebuild can assume about its environment, and the only
definition of what is valid in an ebuild, is the source code of the latest Portage release and a general
consensus about which features are too new to assume availability. This has several drawbacks: not
only is it impossible to change any aspect of Portage behaviour without verifying that nothing in
the tree relies upon it, but if a new package manager should appear it becomes impossible to fully
support such an ill-defined standard.

This document aims to address both of these concerns by defining almost all aspects of what an ebuild
repository looks like, and how an ebuild is allowed to behave. Thus, both Portage and other package
managers can change aspects of their behaviour not defined here without worry of incompatibilities
with any particular repository.

1.3 Reporting Issues

Issues (inaccuracies, wording problems, omissions etc.) in this document should be reported via Gen-
too Bugzilla using product Gentoo Hosted Projects, component PMS/EAPI and the default assignee.
There should be one bug per issue, and one issue per bug.

Patches (in git format-patch form if possible) may be submitted either via Bugzilla or to the
gentoo-pms@lists.gentoo.org mailing list. Patches will be reviewed by the PMS team, who
will do one of the following:

Accept and apply the patch.

Explain why the patch cannot be applied as-is. The patch may then be updated and resubmitted
if appropriate.

Reject the patch outright.

Take special action merited by the individual circumstances.

11

mailto:gentoo-pms@lists.gentoo.org

CHAPTER 1. INTRODUCTION 12

When reporting issues, remember that this document is not the appropriate place for pushing through
changes to the tree or the package manager, except where those changes are bugs.

If any issue cannot be resolved by the PMS team, it may be escalated to the Gentoo Council.

1.4 Conventions

Text in teletype is used for filenames or variable names. Italic text is used for terms with a partic-
ular technical meaning in places where there may otherwise be ambiguity.

The term package manager is used throughout this document in a broad sense. Although some
parts of this document are only relevant to fully featured package managers, many items are equally
applicable to tools or other applications that interact with ebuilds or ebuild repositories.

1.5 Acknowledgements

Thanks to Mike Kelly (package manager provided utilities, section 12.3), Danny van Dyk (ebuild
functions, section 9), David Leverton (various sections), Petteri Rity (environment state, sec-
tion 11.2), Michat Gérny (various sections), Andreas K. Hiittel (stable use masking, section 5.2.11),
Zac Medico (sub-slots, section 7.2) and James Le Cuirot (build dependencies, section 11.1) for con-
tributions. Thanks also to Mike Frysinger and Brian Harring for proof-reading and suggestions for
fixes and/or clarification.

Chapter 2

EAPIs

2.1 Definition

An EAPI can be thought of as a ‘version’ of this specification to which a package conforms. An
EAPI value is a string as per section 3.1.8, and is part of an ebuild’s metadata.

If a package manager encounters a package version with an unrecognised EAPI, it must not attempt to
perform any operations upon it. It could, for example, ignore the package version entirely (although
this can lead to user confusion), or it could mark the package version as masked. A package manager
must not use any metadata generated from a package with an unrecognised EAPI.

The package manager must not attempt to perform any kind of comparison test other than equality
upon EAPIs.

EAPIs are also used for profile directories, as described in section 5.2.2.

2.2 Defined EAPIs

The following EAPIs are defined by this specification:

The ‘original’ base EAPI.

EAPI ‘1’ contains a number of extensions to EAPI ‘0’.
EAPI ‘2’ contains a number of extensions to EAPI ‘1°.
EAPI ‘3’ contains a number of extensions to EAPI ‘2’.
EAPI ‘4’ contains a number of extensions to EAPI ‘3’.
EAPI ‘5’ contains a number of extensions to EAPI ‘4°.
EAPI ‘6’ contains a number of extensions to EAPI “5°.
EAPI 7’ contains a number of extensions to EAPI ‘6’.

N AN AR WD =D

Except where explicitly noted, everything in this specification applies to all of the above EAPIs.!

2.3 Reserved EAPIs

e EAPIs whose value consists purely of an integer are reserved for future versions of this speci-
fication.

o EAPIs whose value starts with the string paludis- are reserved for experimental use by the
Paludis package manager.

! Another unofficial EAPI ‘kdebuild-1" was a series of extensions to EAPI ‘1” formerly used by the Gentoo KDE project.
Some of its features have been included in EAPI ‘2’ or later.

13

Chapter 3

Names and Versions

3.1 Restrictions upon Names

No name may be empty. Package managers must not impose fixed upper boundaries upon the length
of any name. A package manager should indicate or reject any name that is invalid according to these
rules.

3.1.1 Category names
A category name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

Note: A hyphen is not required because of the virtual category. Usually, however, category names
will contain a hyphen.

3.1.2 Package names

A package name may contain any of the characters [A-Za-z0-9+_-]. It must not begin with a
hyphen or a plus sign, and must not end in a hyphen followed by anything matching the version
syntax described in section 3.2.

Note: A package name does not include the category. The term qualified package name is used
where a category/package pair is meant.

3.1.3 Slot names

A slot name may contain any of the characters [A-Za-z0-9+_. -]. It must not begin with a hyphen,
a dot or a plus sign.

3.1.4 USE flag names

A USE flag name may contain any of the characters [A-Za-z0-9+_@-]. It must begin with an
alphanumeric character. Underscores should be considered reserved for USE_EXPAND, as described
in section 11.1.1.

Note: Usage of the at-sign is deprecated. It was previously required for LINGUAS.

14

CHAPTER 3. NAMES AND VERSIONS 15

3.1.5 Repository names

A repository name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a
hyphen. In addition, every repository name must also be a valid package name.

3.1.6 License names

A license name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.1.7 Keyword names

A keyword name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a hyphen.
In contexts where it makes sense to do so, a keyword name may be prefixed by a tilde or a hyphen.
In KEYWORDS, -* is also acceptable as a keyword.

3.1.8 EAPI names

An EAPI name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.2 Version Specifications

The package manager must neither impose fixed limits upon the number of version components, nor
upon the length of any component. Package managers should indicate or reject any version that is
invalid according to the rules below.

A version starts with the number part, which is in the form [0-9]+(\.[0-9]+)* (an unsigned
integer, followed by zero or more dot-prefixed unsigned integers).

This may optionally be followed by one of [a-z] (a lowercase letter).

This may be followed by zero or more of the suffixes _alpha, _beta, _pre, _rc or _p, each of
which may optionally be followed by an unsigned integer. Suffix and integer count as separate
version components.

This may optionally be followed by the suffix -r followed immediately by an unsigned integer (the
“revision number”). If this suffix is not present, it is assumed to be -r0.

3.3 Version Comparison

Version specifications are compared component by component, moving from left to right, as detailed
in algorithm 3.1 and sub-algorithms. If a sub-algorithm returns a decision, then that is the result of
the whole comparison; if it terminates without returning a decision, the process continues from the
point from which it was invoked.

3.4 Uniqueness of Versions

No two packages in a given repository may have the same qualified package name and equal
versions. For example, a repository may not contain more than one of foo-bar/baz-1.0.2,
foo-bar/baz-1.0.2-r0 and foo-bar/baz-1.000.2.

CHAPTER 3. NAMES AND VERSIONS 16

Algorithm 3.1: Version comparison top-level logic

AN U R >

let A and B be the versions to be compared
compare numeric components using algorithm 3.2
compare letter components using algorithm 3.4
compare suffixes using algorithm 3.5

compare revision components using algorithm 3.7
return A =B

Algorithm 3.2: Version comparison logic for numeric components

1:

R A A T o e

_ s s = e
A o - A el =

define the notations Any and Bny to mean the k™ numeric component of A and B respectively,
using 0-based indexing
if Ang > Bng using integer comparison then
return A > B
else if Ang < Bng using integer comparison then
return A < B
end if
let Ann be the number of numeric components of A
let Bnn be the number of numeric components of B
for all i such that i > 1 and i < Ann and i < Bnn, in ascending order do
compare An; and Bn; using algorithm 3.3
end for
if Ann > Bnn then
return A > B
else if Ann < Bnn then
return A < B
end if

Algorithm 3.3: Version comparison logic for each numeric component after the first

1:
2
3
4
S:
6
7
8
9
11:

15:

if either An; or Bn; has a leading 0 then

let An} be An; with any trailing Os removed

let Bn} be Bn; with any trailing Os removed

if An > Bn/ using ASCII stringwise comparison then
return A > B

else if An. < Bn! using ASCII stringwise comparison then
return A <B

end if

: else

if An; > Bn; using integer comparison then
return A > B
else if An; < Bn; using integer comparison then
return A < B
end if
end if

Algorithm 3.4: Version comparison logic for letter components

A o e

let Al be the letter component of A if any, otherwise the empty string
let Bl be the letter component of B if any, otherwise the empty string
if Al > Bl using ASCII stringwise comparison then

return A > B
else if Al < Bl using ASCII stringwise comparison then

return A < B
end if

CHAPTER 3. NAMES AND VERSIONS 17

Algorithm 3.5: Version comparison logic for suffixes

1: define the notations Asy and Bs; to mean the k" suffix of A and B respectively, using 0-based
indexing

2: let Asn be the number of suffixes of A

3: let Bsn be the number of suffixes of B

4: for all i such that i > 0 and i < Asn and i < Bsn, in ascending order do
5: compare As; and Bs; using algorithm 3.6
6: end for

7. if Asn > Bsn then

8: if Aspsy, is of type _p then

9: return A > B
10: else
11: return A < B
12: endif
13: else if Asn < Bsn then
14: if Bsygy, is of type _p then
15: return A < B
16: else
17: return A > B
18: end if
19: end if

Algorithm 3.6: Version comparison logic for each suffix

1: if As; and Bs; are of the same type (_alpha vs _beta etc) then

2. let As! be the integer part of As; if any, otherwise 0
3. let Bs| be the integer part of Bs; if any, otherwise 0
4. if As} > Bs/, using integer comparison then

5: return A > B

6. elseif As} < Bs!, using integer comparison then

7: return A < B

8: endif

9:

else if the type of As; is greater than the type of Bs; using the ordering _alpha < _beta <
_pre < _rc < _p then

10: return A > B

11: else

12: return A <B

13: end if

Algorithm 3.7: Version comparison logic for revision components

let Ar be the integer part of the revision component of A if any, otherwise 0
let Br be the integer part of the revision component of B if any, otherwise 0
if Ar > Br using integer comparison then

return A > B
else if Ar < Br using integer comparison then

return A < B
end if

A o e

Chapter 4

Tree Layout

This chapter defines the layout on-disk of an ebuild repository. In all cases below where a file or
directory is specified, a symlink to a file or directory is also valid. In this case, the package manager
must follow the operating system’s semantics for symbolic links and must not behave differently
from normal.

4.1 Top Level

An ebuild repository shall occupy one directory on disk, with the following subdirectories:

e One directory per category, whose name shall be the name of the category. The layout of these
directories shall be as described in section 4.2.

A profiles directory, described in section 4.4.

A licenses directory (optional), described in section 4.5.

An eclass directory (optional), described in section 4.6.

A metadata directory (optional), described in section 4.7.

Other optional support files and directories (skeleton ebuilds or ChangelLogs, for example)
may exist but are not covered by this specification. The package manager must ignore any of
these files or directories that it does not recognise.

4.2 Category Directories

Each category provided by the repository (see also: the profiles/categories file, section 4.4)
shall be contained in one directory, whose name shall be that of the category. Each category directory
shall contain:

e A metadata.xml file, as described in appendix A. Optional.
e Zero or more package directories, one for each package in the category, as described in sec-
tion 4.3. The name of the package directory shall be the corresponding package name.

Category directories may contain additional files, whose purpose is not covered by this specification.
Additional directories that are not for a package may not be present, to avoid conflicts with package
name directories; an exception is made for filesystem components whose name starts with a dot,
which the package manager must ignore, and for any directory named CVS.

It is not required that a directory exists for each category provided by the repository. A category
directory that does not exist shall be considered equivalent to an empty category (and by extension,
a package manager may treat an empty category as a category that does not exist).

18

CHAPTER 4. TREE LAYOUT 19

4.3 Package Directories

A package directory contains the following:

Zero or more ebuilds. These are as described in section 6 and others.

A metadata.xml file, as described in appendix A. Optional only for legacy support.

A ChangeLog, in a format determined by the provider of the repository. Optional.

A Manifest file, whose format is described in [3]. Can be omitted if the file would be empty.
A files directory, containing any support files needed by the ebuilds. Optional.

Any ebuild in a package directory must be named name-ver.ebuild, where name is the (unquali-
fied) package name, and ver is the package’s version. Package managers must ignore any ebuild file
that does not match these rules.

A package directory that contains no correctly named ebuilds shall be considered a package with no
versions. A package with no versions shall be considered equivalent to a package that does not exist
(and by extension, a package manager may treat a package that does not exist as a package with no
versions).

A package directory may contain other files or directories, whose purpose is not covered by this
specification.

4.4 The Profiles Directory

The profiles directory shall contain zero or more profile directories as described in section 5, as well
as the following files and directories. In any line-based file, lines beginning with a # character are
treated as comments, whilst blank lines are ignored. All contents of this directory, with the exception
of repo_name, are optional.

The profiles directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the profiles directory; a package
manager must not attempt to use any repository whose profiles directory requires an EAPI it does
not support. If no eapi file is present, EAPI O shall be used.

If the repository is not intended to be stand-alone, the contents of these files are to be taken from or
merged with the master repository as necessary.

Other files not described by this specification may exist, but may not be relied upon. The package
manager must ignore any files in this directory that it does not recognise.

arch.list Contains a list, one entry per line, of permissible values for the ARCH variable, and hence
permissible keywords for packages in this repository.

categories Contains a list, one entry per line, of categories provided by this repository.
eapi See above.

info_pkgs Contains a list, one entry per line, of qualified package names. Any package matching
one of these is to be listed when a package manager displays a ‘system information’ listing.

info_vars Contains a list, one entry per line, of profile, configuration, and environment variables
which are considered to be of interest. The value of each of these variables may be shown
when the package manager displays a ‘system information’ listing.

package.mask Contains a list, one entry per line, of package dependency specifications (using the
directory’s EAPI). Any package version matching one of these is considered to be masked,
and will not be installed regardless of profile unless it is unmasked by the user configuration.

For EAPIs listed in table 4.1 as supporting it, package .mask can be a directory instead of] PACKAGE-MASK-DIR

a regular file. Files contained in that directory, unless their name begins with a dot, will be
concatenated in order of their filename in the POSIX locale and the result will be processed as
if it were a single file. Any subdirectories will be ignored.

CHAPTER 4. TREE LAYOUT 20

Table 4.1: EAPIs supporting a directory for package .mask

EAPI package .mask can be a directory?
0,1,2,3,4,5,6 No
7 Yes

profiles.desc Described below in section 4.4.1.

repo_name Contains, on a single line, the name of this repository. The repository name must con-
form to section 3.1.5.

thirdpartymirrors Described below in section 4.4.2.

use.desc Contains descriptions of valid global USE flags for this repository. The format is described
in section 4.4.3.

use.local.desc Contains descriptions of valid local USE flags for this repository, along with the
packages to which they apply. The format is as described in section 4.4.3.

desc/ This directory contains files analogous to use.desc for the various USE_EXPAND variables.
Each file in it is named <varname>.desc, where <varname> is the variable name, in low-
ercase, whose possible values the file describes. The format of each file is as for use.desc,
described in section 4.4.3. The USE_EXPAND name is not included as a prefix here.

updates/ This directory is described in section 4.4.4.

4.4.1 The profiles.desc file

profiles.descis aline-based file, with the standard commenting rules from section 4.4, containing
a list of profiles that are valid for use, along with their associated architecture and status. Each line
has the format:

<keyword> <profile path> <stability>
Where:

e <keyword> is the default keyword for the profile and the ARCH for which the profile is valid.

e <profile path> is the (relative) path from the profiles directory to the profile in question.

e <stability> indicates the stability of the profile. This may be useful for QA tools, which
may wish to display warnings with a reduced severity for some profiles. The values stable
and dev are widely used, but repositories may use other values.

Fields are whitespace-delimited.

4.4.2 The thirdpartymirrors file

thirdpartymirrors is another simple line-based file, describing the valid mirrors for use with
mirror:// URIs in this repository, and the associated download locations. The format of each line
is:

<mirror name> <mirror 1> <mirror 2> ... <mirror n>

Fields are whitespace-delimited. When parsing a URI of the form mirror://name/path/
filename, where the path/ part is optional, the thirdpartymirrors file is searched for a line
whose first field is name. Then the download URIs in the subsequent fields have path/filename
appended to them to generate the URIs from which a download is attempted.

Each mirror name may appear at most once in a file. Behaviour when a mirror name appears multiple
times is undefined. Behaviour when a mirror is defined in terms of another mirror is undefined. A
package manager may choose to fetch from all of or a subset of the listed mirrors, and may use an
order other than the one described.

CHAPTER 4. TREE LAYOUT 21

The mirror with the name equal to the repository’s name (and if the repository has a master, the
master’s name) may be consulted for all downloads.

4.4.3 wuse.desc and related files

use.desc contains descriptions of every valid global USE flag for this repository. It is a line-based
file with the standard rules for comments and blank lines. The format of each line is:

<flagname> - <description>

use.local.desc contains descriptions of every valid local USE flag—those that apply only to a
small number of packages, or that have different meanings for different packages. Its format is:

<category/package>:<flagname> - <description>

Flags must be listed once for each package to which they apply, or if a flag is listed in both use .desc
and use.local.desc, it must be listed once for each package for which its meaning differs from
that described in use.desc.

4.4.4 The updates directory

The updates directory is used to inform the package manager that a package has moved cate-
gories, names, or that a version has changed SLOT. It contains one file per quarter year, named
[1-41Q-[YYYY] for the first to fourth quarter of a given year, for example 1Q-2004 or 3Q-2006.
The format of each file is again line-based, with each line having one of the following formats:

move <gpnl> <qgpn2>
slotmove <spec> <slotl> <slot2>

The first form, where qpnl and qpn2 are qualified package names, instructs the package manager
that the package gpn1 has changed name, category, or both, and is now called qpn2.

The second form instructs the package manager that any currently installed package version matching
package dependency specification spec whose SLOT is set to s1lot1 should have it updated to slot2.

Any name that has appeared as the origin of a move must not be reused in the future. Any slot that
has appeared as the origin of a slot move may not be used by packages matching the spec of that slot
move in the future.

4.5 The Licenses Directory

The 1icenses directory shall contain copies of the licenses used by packages in the repository. Each
file will be named according to the name used in the LICENSE variable as described in section 7.3,
and will contain the complete text of the license in human-readable form. Plain text format is strongly
preferred but not required.

4.6 The Eclass Directory

The eclass directory shall contain copies of the eclasses provided by this repository. The format of
these files is described in section 10. It may also contain, in their own directory, support files needed
by these eclasses.

CHAPTER 4. TREE LAYOUT 22

4.7 The Metadata Directory

The metadata directory contains various repository-level metadata that is not contained in
profiles/. All contents are optional. In this standard only the cache subdirectory is described;
other contents are optional but may include security advisories, DTD files for the various XML files
used in the repository, and repository timestamps.

4.7.1 The metadata cache

The metadata/cache directory may contain a cached form of all important ebuild metadata vari-
ables. The contents of this directory are described in chapter 14.

Chapter 5

Profiles

5.1 General Principles

Generally, a profile defines information specific to a certain ‘type’ of system—it lies somewhere
between repository-level defaults and user configuration in that the information it contains is not
necessarily applicable to all machines, but is sufficiently general that it should not be left to the user
to configure it. Some parts of the profile can be overridden by user configuration, some only by
another profile.

The format of a profile is relatively simple. Each profile is a directory containing any number of the
files described in this chapter, and possibly inheriting another profile. The files themselves follow a
few basic conventions as regards inheritance and format; these are described in the next section. It
may also contain any number of subdirectories containing other profiles.

5.2 Files That Make up a Profile

5.2.1 The parent file

A profile may contain a parent file. Each line must contain a relative path to another profile which
will be considered as one of this profile’s parents. Any settings from the parent are inherited by this
profile, and can be overridden by it. Precise rules for how settings are combined with the parent
profile vary between files, and are described below. Parents are handled depth first, left to right, with
duplicate parent paths being sourced for every time they are encountered.

It is illegal for a profile’s parent tree to contain cycles. Package manager behaviour upon encounter-
ing a cycle is undefined.

This file must not contain comments, blank lines or make use of line continuations.

5.2.2 The eapi file

A profile directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the directory in question; a
package manager must not attempt to use any profile using a directory which requires an EAPI it
does not support. If no eapi file is present, EAPI O shall be used. The EAPI is neither inherited via
the parent file nor in subdirectories.

23

CHAPTER 5. PROFILES 24

Table 5.1: EAPIs supporting directories for profile files

EAPI Supports directories for profile files?
0,1,2,3,4,5,6 No
7 Yes

5.2.3 deprecated

If a profile contains a file named deprecated, it is treated as such. The first line of this file should
contain the path from the profiles directory of the repository to a valid profile that is the recom-
mended upgrade path from this profile. The remainder of the file can contain any text, which may
be displayed to users using this profile by the package manager. This file is not inherited—profiles
which inherit from a deprecated profile are not deprecated.

This file must not contain comments or make use of line continuations.

5.2.4 make.defaults

make .defaults is used to define defaults for various environment and configuration variables. This
file is unusual in that it is not combined at a file level with the parent—instead, each variable is
combined or overridden individually as described in section 5.3.

The file itself is a line-based key-value format. Each line contains a single VAR="value" entry,
where the value must be double quoted. A variable name must start with one of a-zA-Z and may
contain a-zA-Z0-9_ only. Additional syntax, which is a small subset of bash syntax, is allowed as
follows:

e Variables to the right of the equals sign in the form ${foo} or $foo are recognised and ex-
panded from variables previously set in this or earlier make .defaults files.

e One logical line may be continued over multiple physical lines by escaping the newline with
a backslash. A quoted string may be continued over multiple physical lines by either a simple
newline or a backslash-escaped newline.

e Backslashes, except for line continuations, are not allowed.

5.2.5 Simple line-based files

These files are a simple one-item-per-line list, which is inherited in the following manner: the parent
profile’s list is taken, and the current profile’s list appended. If any line begins with a hyphen, then
any lines previous to it whose contents are equal to the remainder of that line are removed from the
list. Once again, blank lines and those beginning with a # are discarded.

In EAPIs listed in table 5.1 as supporting directories for profile files, any of the files package . mask,
package.use, use.* and package .use.* mentioned below can be a directory instead of a regular
file. Files contained in that directory, unless their name begins with a dot, will be concatenated in
order of their filename in the POSIX locale and the result will be processed as if it were a single file.
Any subdirectories will be ignored.

5.2.6 packages

The packages file is used to define the ‘system set’ for this profile. After the above rules for in-
heritance and comments are applied, its lines must take one of two forms: a package dependency
specification prefixed by * denotes that it forms part of the system set. A package dependency spec-
ification on its own may also appear for legacy reasons, but should be ignored when calculating the
system set.

’ PROFILE-FILE-DIRS

CHAPTER 5. PROFILES 25

Table 5.2: EAPIs supporting package . provided in profiles

EAPI Supports package.provided?
0,1,2,3,4,5,6 Optionally
7 No

5.2.7 packages.build

The packages.build file is used by Gentoo’s Catalyst tool to generate stagel tarballs, and has no
relevance to the operation of a package manager. It is thus outside the scope of this document, but is
mentioned here for completeness.

5.2.8 package.mask

package .mask is used to prevent packages from being installed on a given profile. Each line con-
tains one package dependency specification; anything matching this specification will not be installed
unless unmasked by the user’s configuration. In some EAPIs, package .mask can be a directory in-
stead of a regular file as per section 5.2.5.

Note that the -spec syntax can be used to remove a mask in a parent profile, but not necessarily a
global mask (from profiles/package.mask, section 4.4).

Note: Portage currently treats profiles/package.mask as being on the leftmost branch of the
inherit tree when it comes to -1ines. This behaviour may not be relied upon.

5.2.9 package.provided

package.provided is used to tell the package manager that a certain package version should be
considered to be provided by the system regardless of whether it is actually installed. Because it has
severe adverse effects on USE-based and slot-based dependencies, its use is strongly deprecated and
package manager support must be regarded as purely optional. Supported in EAPIs as per table 5.2.

5.2.10 package.use

The package . use file may be used by the package manager to override the default USE flags spec-
ified by make.defaults on a per package basis. The format is to have a package dependency
specification, and then a space delimited list of USE flags to enable. A USE flag in the form of
-flag indicates that the package should have the USE flag disabled. The package dependency spec-
ification is limited to the forms defined by the directory’s EAPI. In some EAPIs, package.use can
be a directory instead of a regular file as per section 5.2.5.

5.2.11 USE masking and forcing

This section covers the eight files use .mask, use.force, use.stable.mask, use.stable.force,
package.use.mask, package.use.force, package.use.stable.mask, and package.use.
stable.force. They are described together because they interact in a non-trivial manner. In some
EAPISs, these files can be directories instead of regular files as per section 5.2.5.

Simply speaking, use.mask and use.force are used to say that a given USE flag must
never or always, respectively, be enabled when using this profile. package.use.mask and
package.use.force do the same thing on a per-package, or per-version, basis.

In profile directories with an EAPI supporting stable masking, as listed in table 5.3, the same is true
for use.stable.mask, use.stable.force, package.use.stable.mask and package.use.

’ PACKAGE-PROVIDED

STABLEMASK

CHAPTER 5. PROFILES 26

Table 5.3: Profile directory support for masking/forcing use flags in stable versions only

EAPI Supports masking/forcing use flags in stable versions?
0,1,2,3,4 No
5,6,7 Yes

stable.force. These files, however, only act on packages that are merged due to a stable key-
word in the sense of subsection 7.3.2. Thus, these files can be used to restrict the feature set deemed
stable in a package.

The precise manner in which the eight files interact is less simple, and is best described in terms
of the algorithm used to determine whether a flag is masked for a given package version. This is
described in algorithm 5.1.

Algorithm 5.1: USE masking logic

1: let masked = false

2: for each profile in the inheritance tree, depth first do
3: if use.mask contains flag then

4 let masked = true

5. elseif use.mask contains -flag then

6 let masked = false

7 end if

8: if stable keyword in use then

9 if use.stable.mask contains flag then

10: let masked = true

11: else if use.stable.mask contains -flag then
12: let masked = false

13: end if

14: end if

15: for each line in package.use.mask, in order, for which the spec matches package do
16: if line contains flag then

17: let masked = true

18: else if /ine contains -flag then

19: let masked = false

20: end if

21: end for
22: if stable keyword in use then

23: for each line in package.use.stable.mask, in order, for which the spec matches package do
24: if line contains flag then

25: let masked = true

26: else if /ine contains -flag then

27: let masked = false

28: end if

29: end for

30: end if

31: end for

Stable restrictions (‘“stable keyword in use” in algorithm 5.1) are applied exactly if replacing in
KEYWORDS all stable keywords by the corresponding tilde prefixed keywords (see subsection 7.3.2)
would result in the package installation being prevented due to the KEYWORDS setting.

The logic for use.force, use.stable.force, package.use.force, and package.use.
stable.force is identical. If a flag is both masked and forced, the mask is considered to take
precedence.

USE_EXPAND values may be forced or masked by using expand_name_value.

A package manager may treat ARCH values that are not the current architecture as being masked.

CHAPTER 5. PROFILES 27

Table 5.4: Profile-defined IUSE injection for EAPIs

EAPI Supports profile-defined IUSE injection?

0,1,2,3,4 No
5,6,7 Yes

Table 5.5: Profile-defined unsetting of variables in EAPIs

EAPI Supports ENV_UNSET?
0,1,2,3,4,5,6 No
7 Yes

5.3 Profile Variables

This section documents variables that have special meaning, or special behaviour, when defined in a
profile’s make .defaults file.

5.3.1 Incremental variables

Incremental variables must stack between parent and child profiles in the following manner: Begin-
ning with the highest parent profile, tokenise the variable’s value based on whitespace and concate-
nate the lists. Then, for any token T beginning with a hyphen, remove it and any previous tokens
whose value is equal to 7 with the hyphen removed, or, if T is equal to -*, remove all previous
values. Note that because of this treatment, the order of tokens in the final result is arbitrary, not nec-
essarily related to the order of tokens in any given profile. The following variables must be treated in
this fashion:

USE

USE_EXPAND
USE_EXPAND_HIDDEN
CONFIG_PROTECT
CONFIG_PROTECT_MASK

If the package manager supports any EAPI listed in table 5.4 as using profile-defined IUSE injection,
the following variables must also be treated incrementally; otherwise, the following variables may or
may not be treated incrementally:

e TUSE_IMPLICIT
e USE_EXPAND_IMPLICIT
e USE_EXPAND_UNPREFIXED

If the package manager supports any EAPI listed in table 5.5 as using ENV_UNSET, the following
variable must also be treated incrementally; otherwise, it may or may not be treated incrementally:

e ENV_UNSET

Other variables, except where they affect only package-manager-specific functionality (such as
Portage’s FEATURES variable), must not be treated incrementally—Ilater definitions shall completely
override those in parent profiles.

5.3.2 Specific variables and their meanings

The following variables have specific meanings when set in profiles.

ARCH The system’s architecture. Must be a value listed in profiles/arch.1list; see section 4.4
for more information. Must be equal to the primary KEYWORD for this profile.

CHAPTER 5. PROFILES 28

CONFIG_PROTECT, CONFIG_PROTECT_MASK Contain whitespace-delimited lists used to
control the configuration file protection. Described more fully in chapter 13.3.3.

USE Defines the list of default USE flags for this profile. Flags may be added or removed by the
user’s configuration. USE_EXPAND values must not be specified in this way.

USE_EXPAND Defines a list of variables which are to be treated incrementally and whose contents
are to be expanded into the USE variable as passed to ebuilds. See section 11.1.1 for details.

USE_EXPAND_UNPREFIXED Similar to USE_EXPAND, but no prefix is used. If the repository
contains any package using an EAPI supporting profile-defined IUSE injection (see table 5.4),
this list must contain at least ARCH. See section 11.1.1 for details.

USE_EXPAND_HIDDEN Contains a (possibly empty) subset of names from USE_EXPAND and
USE_EXPAND_UNPREFIXED. The package manager may use this set as a hint to avoid display-
ing uninteresting or unhelpful information to an end user.

USE_EXPAND_IMPLICIT, IUSE_IMPLICIT Used to inject implicit values into IUSE. See sec-
tion 11.1.1 for details.

ENV_UNSET Contains a whitespace-delimited list of variables that the package manager shall un-
set. See section 11.1 for details.

In addition, for EAPISs listed in table 5.4 as supporting profile defined IUSE injection, the variables
named in USE_EXPAND and USE_EXPAND_UNPREFIXED have special handling as described in sec-
tion 11.1.1.

Any other variables set in make .defaults must be passed on into the ebuild environment as-is, and
are not required to be interpreted by the package manager.

Chapter 6

Ebuild File Format

The ebuild file format is in its basic form a subset of the format of a bash script. The interpreter is
assumed to be GNU bash, version as listed in table 6.1, or any later version. If possible, the package

manager should set the shell’s compatibility level to the exact version specified. It must ensure

that any such compatibility settings (e. g. the BASH_COMPAT variable) are not exported to external

programs.

For EAPISs listed such in table 6.1, the failglob option of bash is set in the global scope of ebuilds.
If set, failed pattern matches during filename expansion result in an error when the ebuild is being
sourced.

The file encoding must be UTF-8 with Unix-style newlines. When sourced, the ebuild must define
certain variables and functions (see sections 7 and 9 for specific information), and must not call any
external programs, write anything to standard output or standard error, or modify the state of the
system in any way.

Table 6.1: Bash version and options

EAPI Bash version failglob in global scope?
0,1,2,3,4,5 32 No
6,7 4.2 Yes

29

Chapter 7

Ebuild-defined Variables

Note: This section describes variables that may or must be defined by ebuilds. For variables that are
passed from the package manager to the ebuild, see section 11.1.

If any of these variables are set to invalid values, or if any of the mandatory variables are undefined,
the package manager’s behaviour is undefined; ideally, an error in one ebuild should not prevent
operations upon other ebuilds or packages.

7.1 Metadata Invariance

All ebuild-defined variables discussed in this chapter must be defined independently of any system,
profile or tree dependent data, and must not vary depending upon the ebuild phase. In particular,
ebuild metadata can and will be generated on a different system from that upon which the ebuild will
be used, and the ebuild must generate identical metadata every time it is used.

Globally defined ebuild variables without a special meaning must similarly not rely upon variable
data.

7.2 Mandatory Ebuild-defined Variables

All ebuilds must define at least the following variables:

DESCRIPTION A short human-readable description of the package’s purpose. May be defined by
an eclass. Must not be empty.

SLOT The package’s slot. Must be a valid slot name, as per section 3.1.3. May be defined by an
eclass. Must not be empty.

In EAPIs shown in table 8.7 as supporting sub-slots, the SLOT variable may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character. The sub-slot must
be a valid slot name, as per section 3.1.3. The sub-slot is used to represent cases in which
an upgrade to a new version of a package with a different sub-slot may require dependent
packages to be rebuilt. When the sub-slot part is omitted from the SLOT definition, the package
is considered to have an implicit sub-slot which is equal to the regular slot.

7.3 Optional Ebuild-defined Variables

Ebuilds may define any of the following variables:

EAPI The EAPI. See below.

30

CHAPTER 7. EBUILD-DEFINED VARIABLES 31

Table 7.1: EAPIs supporting IUSE defaults

EAPI Supports IUSE defaults?

0 No
1,2,3,4,5,6,7 Yes

Table 7.2: EAPIs supporting various ebuild-defined variables

EAPI Supports PROPERTIES? Supports REQUIRED_USE?

0,1,2,3 Optionally No
4,5,6,7 Yes Yes

HOMEPAGE The URI or URIs for a package’s homepage, including protocols. See section 8 for
full syntax.

SRC_URI A list of source URISs for the package. Valid protocols are http://, https://, ftp://
and mirror:// (see section 4.4.2 for mirror behaviour). Fetch restricted packages may in-
clude URL parts consisting of just a filename. See section 8 for full syntax.

LICENSE The package’s license. Each text token must be a valid license name, as per section 3.1.6,
and must correspond to a tree “licenses/” entry (see section 4.5). See section 8 for full syntax.

KEYWORDS A whitespace separated list of keywords for the ebuild. Each token must be a valid
keyword name, as per section 3.1.7. See section 7.3.2 for full syntax.

IUSE The USE flags used by the ebuild. Any eclass that works with USE flags must also set IUSE,
listing only the variables used by that eclass. The package manager is responsible for merging
these values. See section 11.1.1 for discussion on which values must be listed in this variable.

In EAPIs shown in table 7.1 as supporting IUSE defaults, any use flag name in TUSE may be
prefixed by at most one of a plus or a minus sign. If such a prefix is present, the package man-
ager may use it as a suggestion as to the default value of the use flag if no other configuration
overrides it.

REQUIRED_USE Zero or more assertions that must be met by the configuration of USE flags to be
valid for this ebuild. See section 8.2.7 for description and section 8§ for full syntax. Only in
EAPIs listed in table 7.2 as supporting REQUIRED_USE.

PROPERTIES Zero or more properties for this package. See section 8.2.9 for value meanings and
section 8 for full syntax. For EAPIs listed in table 7.2 as having optional support, ebuilds must
not rely upon the package manager recognising or understanding this variable in any way.

RESTRICT Zero or more behaviour restrictions for this package. See section 8.2.8 for value mean-
ings and section 8 for full syntax.

DEPEND See section 8.

RDEPEND See section 8. For some EAPIs, RDEPEND has special behaviour for its value if unset
and when used with an eclass. See section 7.3.3 for details.

PDEPEND See section 8.
BDEPEND See section 8.

7.3.1 EAPI
An empty or unset EAPI value is equivalent to 0. Ebuilds must not assume that they will get a
particular one of these two values if they are expecting one of these two values.

The package manager must either pre-set the EAPI variable to O or ensure that it is unset before
sourcing the ebuild for metadata generation. When using the ebuild for other purposes, the package

| ITUSE-DEFAULTS

REQUIRED-USE

PROPERTIES

CHAPTER 7. EBUILD-DEFINED VARIABLES 32

Table 7.3: EAPIs with RDEPEND=DEPEND default

EAPI RDEPEND=DEPEND?

0,1,2,3 Yes
4,5,6,7 No

manager must either pre-set EAPI to the value specified by the ebuild’s metadata or ensure that it is
unset.

If any of these variables are set to invalid values, the package manager’s behaviour is undefined;
ideally, an error in one ebuild should not prevent operations upon other ebuilds or packages.

If the EAPI is to be specified in an ebuild, the EAPI variable must be assigned to precisely once.
The assignment must not be preceded by any lines other than blank lines or those that start with
optional whitespace (spaces or tabs) followed by a # character, and the line containing the assignment
statement must match the following regular expression:

~[\t]*EAPI=([’>"]17) ([A-Za-z0-9+_.-1x)\1[\tI*([\tl#.%)7$

The package manager must determine the EAPI of an ebuild by parsing its first non-blank and non-
comment line, using the above regular expression. If it matches, the EAPI is the substring matched
by the capturing parentheses (O if empty), otherwise it is 0. For a recognised EAPI, the package
manager must make sure that the EAPT value obtained by sourcing the ebuild with bash is identical
to the EAPI obtained by parsing. The ebuild must be treated as invalid if these values are different.

7.3.2 Keywords

Keywords are used to indicate levels of stability of a package on a respective architecture arch. The
following conventions are used:

e arch: Both the package version and the ebuild are widely tested, known to work and not have
any serious issues on the indicated platform. This is referred to as a stable keyword.

e ~arch: The package version and the ebuild are believed to work and do not have any known
serious bugs, but more testing is required before the package version is considered suitable for
obtaining a stable keyword. This is referred to as an unstable keyword or a testing keyword.

e No keyword: It is not known whether the package will work, or insufficient testing has oc-
curred.

e -arch: The package version will not work on the architecture.

The -* keyword is used to indicate package versions which are not worth trying to test on unlisted
architectures.

An empty KEYWORDS variable indicates uncertain functionality on any architecture.

7.3.3 RDEPEND value

In EAPIs listed in table 7.3 as having RDEPEND=DEPEND, if RDEPEND is unset (but not if it is set to
an empty string) in an ebuild, when generating metadata the package manager must treat its value as
being equal to the value of DEPEND.

When dealing with eclasses, only values set in the ebuild itself are considered for this behaviour; any
DEPEND or RDEPEND set in an eclass does not change the implicit RDEPEND=DEPEND for the ebuild
portion, and any DEPEND value set in an eclass does not get treated as being part of RDEPEND.

l RDEPEND-DEPEND

CHAPTER 7. EBUILD-DEFINED VARIABLES 33

Table 7.4: EAPIs supporting DEFINED_PHASES

EAPI Supports DEFINED_PHASES?

0,1,2,3 Optionally
4,5,6,7 Yes

7.4 Magic Ebuild-defined Variables

The following variables must be defined by inherit (see section 10.1), and may be considered to
be part of the ebuild’s metadata:

ECLASS The current eclass, or unset if there is no current eclass. This is handled magically by
inherit and must not be modified manually.

INHERITED List of inherited eclass names. Again, this is handled magically by inherit.

Note: Thus, by extension of section 7.1, inherit may not be used conditionally, except upon
constant conditions.

The following are special variables defined by the package manager for internal use and may or may
not be exported to the ebuild environment:

DEFINED_PHASES A space separated arbitrarily ordered list of phase names (e.g. configure
setup unpack) whose phase functions are defined by the ebuild or an eclass inherited by the
ebuild. If no phase functions are defined, a single hyphen is used instead of an empty string.
For EAPIs listed in table 7.4 as having optional DEFINED_PHASES support, package managers
may not rely upon the metadata cache having this variable defined, and must treat an empty
string as “this information is not available”.

Note: Thus, by extension of section 7.1, phase functions must not be defined based upon any variant
condition.

| DEFINED-PHASES

Chapter 8

Dependencies

8.1 Dependency Classes

There are three classes of dependencies supported by ebuilds:

e Build dependencies (DEPEND). These must be installed and usable before any of the ebuild
src_* phase functions is executed. These may not be installed at all if a binary package is
being merged.

e Runtime dependencies (RDEPEND). These must be installed and usable before the results of an
ebuild merging are treated as usable.

e Post dependencies (PDEPEND). These must be installed at some point before the package man-
ager finishes the batch of installs.

Additionally, in EAPIs listed in table 8.3 as supporting BDEPEND, the build dependencies are split
into two subclasses:

e BDEPEND build dependencies that are binary compatible with the native build system (CBUILD).
The ebuild is allowed to call binary executables installed by this kind of dependency.

e DEPEND build dependencies that are binary compatible with the system being built (CHOST).
The ebuild must not execute binary executables installed by this kind of dependency.

Table 8.1 lists dependencies which must be satisfied before a particular phase function is executed.
Table 8.2 summarises additional interfaces related to the dependency classes.

In addition, SRC_URI, HOMEPAGE, RESTRICT, PROPERTIES, LICENSE and REQUIRED_USE use
dependency-style specifications to specify their values.

Table 8.1: Dependency classes required to be satisfied for a particular phase function

Phase function Satisfied dependency classes
pkg_pretend, pkg_setup, None (ebuilds can rely only on the packages in the
pkg_info, pkg_nofetch system set)
src_unpack, src_prepare, DEPEND, BDEPEND

src_configure, src_compile,
src_test, src_install

pkg_preinst, pkg_postinst, RDEPEND (unless the particular dependency results in a
pkg_prerm, pkg_postrm circular dependency, in which case it may be installed later)

pkg_config RDEPEND, PDEPEND

34

BDEPEND

CHAPTER 8. DEPENDENCIES 35

8.2

Table 8.2: Summary of other interfaces related to dependency classes

BDEPEND DEPEND RDEPEND, PDEPEND
Binary compatible with CBUILD CHOST CHOST
Base unprefixed path / ${SYSROOT} ${ROOTZ}
Relevant offset-prefix ${BROOT} ${EPREFIX} ${EPREFIX}
Path combined with prefix ~ ${BROOT} ${ESYSROOT} ${EROOT}
PM query command option -b -d -r

Table 8.3: EAPIs supporting additional dependency types

EAPI Supports BDEPEND?
0,1,2,3,4,5,6 No
7 Yes

Dependency Specification Format

The following elements are recognised in at least one class of specification. All elements must be
surrounded on both sides by whitespace, except at the start and end of the string.

e A package dependency specification. Permitted in DEPEND, BDEPEND, RDEPEND, PDEPEND.
e A URI, in the form proto://host/path. Permitted in SRC_URI and HOMEPAGE. In EAPIs

listed in table 8.4 as supporting SRC_URI arrows, may optionally be followed by whitespace,
then ->, then whitespace, then a simple filename when in SRC_URI. For SRC_URI behaviour,
see section 8.2.10.

A flat filename. Permitted in SRC_URI.

A license name (e. g. GPL-2). Permitted in LICENSE.

A use flag name, optionally preceded by an exclamation mark. Permitted in REQUIRED_USE.
A simple string. Permitted in RESTRICT and PROPERTIES.

An all-of group, which consists of an open parenthesis, followed by whitespace, followed by
one or more of (a dependency item of any kind followed by whitespace), followed by a close
parenthesis. More formally: all-of ::= ’>(’ whitespace (item whitespace)+ ’)’.
Permitted in all specification style variables.

An any-of group, which consists of the string | |, followed by whitespace, followed by an open
parenthesis, followed by whitespace, followed by one or more of (a dependency item of any
kind followed by whitespace), followed by a close parenthesis. More formally: any-of ::=
>| |’ whitespace ’(’ whitespace (item whitespace)+ ’)’. Permitted in DEPEND,
BDEPEND, RDEPEND, PDEPEND, LICENSE, REQUIRED_USE.

An exactly-one-of group, which has the same format as the any-of group, but begins with the
string =~ instead. Permitted in REQUIRED_USE.

An at-most-one-of group, which has the same format as the any-of group, but begins with
the string 77 instead. Permitted in REQUIRED_USE in EAPIs listed in table 8.5 as supporting
REQUIRED_USE 77 groups.

A use-conditional group, which consists of an optional exclamation mark, followed by a use
flag name, followed by a question mark, followed by whitespace, followed by an open paren-
thesis, followed by whitespace, followed by one or more of (a dependency item of any kind
followed by whitespace), followed by a close parenthesis. More formally: use-conditional
1:= 21’7 flag-name ’7’ whitespace ’(’ whitespace (item whitespace)+ ’)’.
Permitted in all specification style variables.

In particular, note that whitespace is not optional.

8.2.1 All-of dependency specifications

In an all-of group, all of the child elements must be matched.

| AT-MOST-ONE-OF

CHAPTER 8. DEPENDENCIES 36

Table 8.4: EAPIs supporting SRC_URI arrows

EAPI Supports SRC_URI arrows?

0,1 No
2,3,4,5,6,7 Yes

Table 8.5: EAPIs supporting REQUIRED_USE 77 groups

EAPI Supports REQUIRED_USE 77 groups?

0,1,2,3,4 No
5,6,7 Yes

8.2.2 USE-conditional dependency specifications
In a use-conditional group, if the associated use flag is enabled (or disabled if it has an exclamation
mark prefix), all of the child elements must be matched.

It is an error for a flag to be used if it is not included in TUSE_EFFECTIVE as described in sec-
tion 11.1.1.

8.2.3 Any-of dependency specifications

Any use-conditional group that is an immediate child of an any-of group, if not enabled (disabled
for an exclamation mark prefixed use flag name), is not considered a member of the any-of group for
match purposes.

In an any-of group, at least one immediate child element must be matched. A blocker is considered
to be matched if its associated package dependency specification is not matched.

In EAPIs specified in table 8.6, an empty any-of group counts as being matched.

8.2.4 Exactly-one-of dependency specifications

Any use-conditional group that is an immediate child of an exactly-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the exactly-
one-of group for match purposes.

In an exactly-one-of group, exactly one immediate child element must be matched.

In EAPIs specified in table 8.6, an empty exactly-one-of group counts as being matched.

8.2.5 At-most-one-of dependency specifications

Any use-conditional group that is an immediate child of an at-most-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the at-
most-one-of group for match purposes.

In an at-most-one-of group, at most one immediate child element must be matched.

Table 8.6: Matching of empty dependency groups in EAPIs

EAPI Empty | | and ~~ groups are matched?

0,1,2,3,4,5,6 Yes
7 No

| EMPTY-DEP-GROUPS

CHAPTER 8. DEPENDENCIES 37

Table 8.7: Support for SLOT dependencies and sub-slots in EAPIs

EAPI Supports SLOT dependencies? Supports sub-slots?

0 No No
1,2,3,4 Named only No
5,6,7 Named and operator Yes

Table 8.8: EAPIs supporting USE dependencies

EAPI Supports USE dependencies?

0,1 No
2,3 2-style
4,5,6,7 4-style

8.2.6 Package dependency specifications
A package dependency can be in one of the following base formats. A package manager must warn
or error on non-compliant input.

e A simple category/package name.
e An operator, as described in section 8.2.6.1, followed immediately by category/package,
followed by a hyphen, followed by a version specification.

In EAPIs shown in table 8.7 as supporting SLOT dependencies, either of the above formats may
additionally be suffixed by a :slot restriction, as described in section 8.2.6.3. A package manager
must warn or error if slot dependencies are used with an EAPI not supporting SLOT dependencies.

In EAPIs shown in table 8.8 as supporting 2-style or 4-style USE dependencies, a specification may
additionally be suffixed by at most one 2-style or 4-style [use] restriction, as described in sec-
tion 8.2.6.4. A package manager must warn or error if this feature is used with an EAPI not support-
ing use dependencies.

Note: Order is important. The slot restriction must come before use dependencies.

8.2.6.1 Operators

The following operators are available:
< Strictly less than the specified version.
<= Less than or equal to the specified version.

= Exactly equal to the specified version. Special exception: if the version specified has an asterisk
immediately following it, then only the given number of version components is used for com-
parison, i.e. the asterisk acts as a wildcard for any further components. When an asterisk is
used, the specification must remain valid if the asterisk were removed. (An asterisk used with
any other operator is illegal.)

~ Equal to the specified version when revision parts are ignored.
>= QGreater than or equal to the specified version.

> Strictly greater than the specified version.
8.2.6.2 Block operator
If the specification is prefixed with one or two exclamation marks, the named dependency is a block

rather than a requirement—that is to say, the specified package must not be installed, with the fol-
lowing exceptions:

USE-DEPS

CHAPTER 8. DEPENDENCIES 38

Table 8.9: Exclamation mark strengths for EAPIs

EAPI ! '

0,1 Unspecified Forbidden
2,3,4,5,6,7 Weak Strong

e Blocks on a package provided exclusively by the ebuild do not count.
e Weak blocks on the package version of the ebuild itself do not count.

There are two strengths of block: weak and strong. A weak block may be ignored by the package
manager, so long as any blocked package will be uninstalled later on. A strong block must not be
ignored. The mapping from one or two exclamation marks to strength is described in table 8.9.

8.2.6.3 Slot dependencies

A named slot dependency consists of a colon followed by a slot name. A specification with a named
slot dependency matches only if the slot of the matched package is equal to the slot specified. If
the slot of the package to match cannot be determined (e. g. because it is not a supported EAPT), the
match is treated as unsuccessful.

In EAPIs shown in table 8.7 as supporting sub-slots, a slot dependency may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character.

An operator slot dependency consists of a colon followed by one of the following operators:

* Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will not break if the matched package is uninstalled and replaced by a different
matching package in a different slot.

= Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will break unless a matching package with slot and sub-slot equal to the slot and
sub-slot of the best version installed as a build-time (DEPEND) dependency is available.

slot= Indicates that only a specific slot value is acceptable, and otherwise behaves identically to the
plain equals slot operator.

To implement the equals slot operator, the package manager will need to store the slot/sub-slot pair
of the best installed version of the matching package. This syntax is only for package manager use
and must not be used by ebuilds. The package manager may do this by inserting the appropriate
slot/sub-slot pair between the colon and equals sign when saving the package’s dependencies. The
sub-slot part must not be omitted here (when the SLOT variable omits the sub-slot part, the package
is considered to have an implicit sub-slot which is equal to the regular slot).

Whenever the equals slot operator is used in an enabled dependency group, the dependencies
(DEPEND) must ensure that a matching package is installed at build time. It is invalid to use the
equals slot operator inside PDEPEND or inside any-of dependency specifications.

8.2.6.4 2-style and 4-style USE dependencies

A 2-style or 4-style use dependency consists of one of the following:
[opt] The flag must be enabled.

[opt=] The flag must be enabled if the flag is enabled for the package with the dependency, or
disabled otherwise.

[lopt=] The flag must be disabled if the flag is enabled for the package with the dependency, or
enabled otherwise.

[opt?] The flag must be enabled if the flag is enabled for the package with the dependency.
[lopt?] The flag must be disabled if the use flag is disabled for the package with the dependency.

| BANG-STRENGTH

SLOT-DEPS

SUB-SLOT

’ SLOT-OPERATOR-DEPS

CHAPTER 8. DEPENDENCIES 39

[-opt] The flag must be disabled.
Multiple requirements may be combined using commas, e.g. [first,-second,third?].
When multiple requirements are specified, all must match for a successful match.

In a 4-style use dependency, the flag name may immediately be followed by a default specified by
either (+) or (-). The former indicates that, when applying the use dependency to a package that
does not have the flag in question in IUSE_REFERENCEABLE, the package manager shall behave as if
the flag were present and enabled; the latter, present and disabled.

Unless a 4-style default is specified, it is an error for a use dependency to be applied to an ebuild
which does not have the flag in question in IUSE_REFERENCEABLE.

Note: By extension of the above, a default that could reference an ebuild using an EAPI not support-
ing profile TUSE injections cannot rely upon any particular behaviour for flags that would not have to
be part of IUSE.

It is an error for an ebuild to use a conditional use dependency when that ebuild does not have the
flag in ITUSE_EFFECTIVE.

8.2.7 USE state constraints

REQUIRED_USE contains a list of assertions that must be met by the configuration of USE flags to be
valid for this ebuild. In order to be matched, a USE flag in a terminal element must be enabled (or
disabled if it has an exclamation mark prefix).

If the package manager encounters a package version where REQUIRED_USE assertions are not met,
it must treat this package version as if it was masked. No phase functions must be called.

It is an error for a flag to be used if it is not included in IUSE_EFFECTIVE.

8.2.8 Restrict

The following tokens are permitted inside RESTRICT:

mirror The package’s SRC_URI entries may not be mirrored, and mirrors should not be checked
when fetching.

fetch The package’s SRC_URI entries may not be downloaded automatically. If entries are not avail-
able, pkg_nofetch is called. Implies mirror.

strip No stripping of debug symbols from files to be installed may be performed. In EAPIs listed in
table 12.15 as supporting controllable stripping, this behaviour may be altered by the dostrip
command.

userpriv The package manager may not drop root privileges when building the package.
test The src_test phase must not be run.

Package managers may recognise other tokens, but ebuilds may not rely upon them being supported.

8.2.9 Properties

The following tokens are permitted inside PROPERTIES:
interactive The package may require interaction with the user via the tty.

Ebuilds may not rely upon any token being supported.

’ USE-DEP-DEFAULTS

CHAPTER 8. DEPENDENCIES 40

8.2.10 SRC_URI

All filename components that are enabled (i. e. not inside a use-conditional block that is not matched)
in SRC_URI must be available in the DISTDIR directory. In addition, these components are used to
make the A and AA variables.

If a component contains a full URI with protocol, that download location must be used. Package
managers may also consult mirrors for their files.

The special mirror:// protocol must be supported. See section 4.4.2 for mirror details.

If a simple filename rather than a full URI is provided, the package manager can only use mirrors to
download the file.

The RESTRICT metadata key can be used to impose additional restrictions upon downloading—see
section 8.2.8 for details.

In EAPIs supporting arrows, if an arrow is used, the filename used when saving to DISTDIR shall
instead be the name on the right of the arrow. When consulting mirrors (except for those explicitly
listed on the left of the arrow, if mirror:// is used), the filename to the right of the arrow shall be
requested instead of the filename in the URI.

[SRC-URI-ARROWS

Chapter 9

Ebuild-defined Functions

9.1 List of Functions

The following is a list of functions that an ebuild, or eclass, may define, and which will be called
by the package manager as part of the build and/or install process. In all cases the package manager
must provide a default implementation of these functions; unless otherwise stated this must be a no-
op. Most functions must assume only that they have write access to the package’s working directory
(the WORKDIR environment variable; see section 11.1), and the temporary directory T; exceptions are
noted below. All functions may assume that they have read access to all system libraries, binaries
and configuration files that are accessible to normal users.

The environment for functions run outside of the build sequence (that is, pkg_config, pkg_info,
pkg_prerm and pkg_postrm) must be the environment used for the build of the package, not the
current configuration.

Ebuilds must not call nor assume the existence of any phase functions.

9.1.1 Initial working directories

Some functions may assume that their initial working directory is set to a particular location; these
are noted below. If no initial working directory is mandated, it may be set to anything and the
ebuild must not rely upon a particular location for it. The ebuild may assume that the initial working
directory for any phase is a trusted location that may only be written to by a privileged user and
group.

Some functions are described as having an initial working directory of S with an error or fallback to
WORKDIR. For EAPIs listed in table 9.1 as having the fallback, this means that if S is not a directory
before the start of the phase function, the initial working directory shall be WORKDIR instead. For
EAPIs where it is a conditional error, if S is not a directory before the start of the phase function, it
is a fatal error, unless all of the following conditions are true, in which case the fallback to WORKDIR
is used:

e The A variable contains no items.

e The phase function in question is not in DEFINED_PHASES.

e None of the phase functions unpack, prepare, configure, compile or install, if sup-
ported by the EAPI in question and occurring prior to the phase about to be executed, are in
DEFINED_PHASES.

9.1.2 pkg pretend

The pkg_pretend function is only called for EAPISs listed in table 9.2 as supporting it.

41

[S-WORKDIR-FALLBACK

PKG-PRETEND

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 42

Table 9.1: EAPIs with S to WORKDIR fallbacks

EAPI Fallback to WORKDIR permitted?

0,1,2,3 Always
4,5,6,7 Conditional error

Table 9.2: EAPIs supporting pkg_pretend

EAPI Supports pkg_pretend?

0,1,2,3 No
4,5,6,7 Yes

The pkg_pretend function may be used to carry out sanity checks early on in the install process.
For example, if an ebuild requires a particular kernel configuration, it may perform that check in
pkg_pretend and call eerror and then die with appropriate messages if the requirement is not
met.

pkg_pretend is run separately from the main phase function sequence, and does not participate in
any kind of environment saving. There is no guarantee that any of an ebuild’s dependencies will be
met at this stage, and no guarantee that the system state will not have changed substantially before
the next phase is executed.

pkg_pretend must not write to the filesystem.

9.1.3 pkg_setup

The pkg_setup function sets up the ebuild’s environment for all following functions, before the build
process starts. Further, it checks whether any necessary prerequisites not covered by the package
manager, e. g. that certain kernel configuration options are fulfilled.

pkg_setup must be run with full filesystem permissions, including the ability to add new users
and/or groups to the system.

9.14 src_unpack
The src_unpack function extracts all of the package’s sources. In EAPIs lacking src_prepare, it
may also apply patches and set up the package’s build system for further use.

The initial working directory must be WORKDIR, and the default implementation used when the ebuild
lacks the src_unpack function shall behave as:

Listing 9.1: src_unpack

src_unpack() {
if [[-n ${A}]]; then
unpack ${A}
fi

9.1.5 src_prepare

The src_prepare function is only called for EAPISs listed in table 9.3 as supporting it. The src_
prepare function can be used for post-unpack source preparation.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

SRC-PREPARE

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 43

Table 9.3: src_prepare support and behaviour for EAPIs

EAPI Supports src_prepare? Format

0,1 No Not applicable
2,3,4,5 Yes no-op
6,7 Yes 6

Table 9.4: EAPIs supporting src_configure

EAPI Supports src_configure?
0,1 No
2,3,4,5,6,7 Yes

For EAPIs listed in table 9.3 as using format 6, the default implementation used when the ebuild | SRC-PREPARE-6
lacks the src_prepare function shall behave as:

Listing 9.2: src_prepare, format 6

src_prepare() {
if declare -p PATCHES | grep -q "“declare -a "; then
[[-n ${PATCHES[@]} 1] && eapply "${PATCHES[@]}"
else
[[-n ${PATCHES} 1] && eapply ${PATCHES}
fi
eapply_user

For other EAPIs supporting src_prepare, the default implementation used when the ebuild lacks
the src_prepare function is a no-op.

9.1.6 src_configure

The src_configure function is only called for EAPIs listed in table 9.4 as supporting it.] SRC-CONFIGURE

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

The src_configure function configures the package’s build environment. The default implemen-
tation used when the ebuild lacks the src_configure function shall behave as:

Listing 9.3: src_configure

src_configure() {
if [[-x ${ECONF_SOURCE:-.}/configure]]; then
econf
fi

9.1.7 src_compile

The src_compile function configures the package’s build environment in EAPIs lacking src_
configure, and builds the package in all EAPIs.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPISs listed in table 9.5 as using format 0, the default implementation used when the ebuild ’ SRC-COMPILE-0 ‘
lacks the src_compile function shall behave as:

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 44

Table 9.5: src_compile behaviour for EAPIs

EAPI Format
0 0
1 1
2,3,4,5,6,7 2

Listing 9.4: src_compile, format 0

src_compile() {
if [[-x ./configure]]; then

econf

fi

if [[-f Makefile]] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"

fi

For EAPISs listed in table 9.5 as using format 1, the default implementation used when the ebuild | sSrRc-cOMPILE-1
lacks the src_compile function shall behave as:

Listing 9.5: src_compile, format 1

src_compile() {
if [[-x ${ECONF_SOURCE:-.}/configure]]; then

econf

fi

if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"

fi

For EAPIs listed in table 9.5 as using format 2, the default implementation used when the ebuild | SRc-cOMPILE-2
lacks the src_compile function shall behave as:

Listing 9.6: src_compile, format 2

src_compile() {
if [[-f Makefile]] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"
fi

9.1.8 src_test

The src_test function runs unit tests for the newly built but not yet installed package as provided.

The initial working directory must be S if that exists, falling back to WORKDIR otherwise. The default
implementation used when the ebuild lacks the src_test function must, if tests are enabled, run
emake check if and only if such a target is available, or if not run emake test if and only if such
a target is available. In both cases, if emake returns non-zero the build must be aborted.

For EAPIs listed in table 9.6 as not supporting parallel tests, the emake command must be called] PARALLEL-TESTS

with option -j1.

The src_test function may be disabled by RESTRICT. See section 8.2.8. It may be disabled by
user too, using a PM-specific mechanism.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 45

Table 9.6: src_test behaviour for EAPIs

EAPI Supports parallel tests?

0,1,2,3,4 No
5,6,7 Yes

Table 9.7: src_install behaviour for EAPIs

EAPI Format

0,1,2,3 no-op
4,5 4
6,7 6

9.1.9 src_install

The src_install function installs the package’s content to a directory specified in D.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.7 as using format 4, the default implementation used when the ebuild
lacks the src_install function shall behave as:

Listing 9.7: src_install, format 4
src_install() {
if [[-f Makefile]] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi

if ! declare -p DOCS >/dev/null 2>&1 ; then
local d
for d in README* ChangeLog AUTHORS NEWS TODO CHANGES \
THANKS BUGS FAQ CREDITS CHANGELOG ; do
([-s "${d}" 1] && dodoc "${d}"
done
elif declare -p DOCS | grep -q "~declare -a " ; then
dodoc "${DOCS[@]}"
else
dodoc ${DOCS}
fi

For EAPIs listed in table 9.7 as using format 6, the default implementation used when the ebuild
lacks the src_install function shall behave as:

Listing 9.8: src_install, format 6
src_install() {
if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi
einstalldocs

For other EAPIs, the default implementation used when the ebuild lacks the src_install function
is a no-op.

SRC-INSTALL

| SRC-INSTALL-4]

SRC-INSTALL-6

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 46

9.1.10 pkg_preinst

The pkg_preinst function performs any special tasks that are required immediately before merging
the package to the live filesystem. It must not write outside of the directories specified by the ROOT
and D environment variables.

pkg_preinst must be run with full access to all files and directories below that specified by the
ROOT and D environment variables.

9.1.11 pkg_postinst

The pkg_postinst function performs any special tasks that are required immediately after merging
the package to the live filesystem. It must not write outside of the directory specified in the ROOT
environment variable.

pkg_postinst, like, pkg_preinst, must be run with full access to all files and directories below
that specified by the ROOT environment variable.

9.1.12 pkg_prerm

The pkg_prerm function performs any special tasks that are required immediately before unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_prerm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.13 pkg_postrm

The pkg_postrm function performs any special tasks that are required immediately after unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_postrm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.14 pkg_config

The pkg_config function performs any custom steps required to configure a package after it has
been fully installed. It is the only ebuild function which may be interactive and prompt for user
input.

pkg_config must be run with full access to all files and directories inside of ROOT.

9.1.15 pkg_info

The pkg_info function may be called by the package manager when displaying information about an
installed package. In EAPIs listed in table 9.8 as supporting pkg_info on non-installed packages,
it may also be called by the package manager when displaying information about a non-installed
package. In this case, ebuild authors should note that dependencies may not be installed.

pkg_info must not write to the filesystem.

PKG-INFO

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 47

Table 9.8: EAPIs supporting pkg_info on non-installed packages

EAPI Supports pkg_info on non-installed packages?

0,1,2,3 No
4,5,6,7 Yes

Table 9.9: EAPIs supporting default_ phase functions

EAPI Supports default_ functions in phases
0,1 None
2,3 pkg_nofetch, src_unpack, src_prepare, src_configure,

src_compile, src_test
4,5,6,7 pkg_nofetch, src_unpack, src_prepare, src_configure,
src_compile, src_install, src_test

9.1.16 pkg_nofetch

The pkg_nofetch function is run when the fetch phase of an fetch-restricted ebuild is run, and the
relevant source files are not available. It should direct the user to download all relevant source files
from their respective locations, with notes concerning licensing if applicable.

pkg_nofetch must require no write access to any part of the filesystem.

9.1.17 Default phase functions

In EAPIs listed in table 9.9 as supporting default_ phase functions, a function named default_
(phase) that behaves as the default implementation for that EAPI shall be defined when executing
any ebuild phase listed in the table. Ebuilds must not call these functions except when in the phase
in question.

9.2 Call Order

The call order for installing a package is:

e pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.

pkg_setup

src_unpack

src_prepare (only for EAPIs listed in table 9.3)
src_configure (only for EAPIs listed in table 9.4)
src_compile

src_test (except if RESTRICT=test or disabled by user)
src_install

pkg_preinst

pkg_postinst

The call order for uninstalling a package is:

e pkg_prerm
e pkg_postrm

The call order for upgrading, downgrading or reinstalling a package is:

e pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.
e pkg_setup

’ DEFAULT-PHASE-FUNCS

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 48

src_unpack

src_prepare (only for EAPIs listed in table 9.3)
src_configure (only for EAPIs listed in table 9.4)
src_compile

src_test (except if RESTRICT=test)
src_install

pkg_preinst

pkg_prerm for the package being replaced
pkg_postrm for the package being replaced
pkg_postinst

Note: When up- or downgrading a package in EAPI O or 1, the last four phase functions can al-
ternatively be called in the order pkg_preinst, pkg_postinst, pkg_prerm, pkg_postrm. This
behaviour is deprecated.

The pkg_config, pkg_info and pkg_nofetch functions are not called in a normal sequence. The
pkg_pretend function is called some unspecified time before a (possibly hypothetical) normal se-
quence.

For installing binary packages, the src phases are not called.

When building binary packages that are not to be installed locally, the pkg_preinst and pkg_
postinst functions are not called.

Chapter 10

Eclasses

Eclasses serve to store common code that is used by more than one ebuild, which greatly aids main-
tainability and reduces the tree size. However, due to metadata cache issues, care must be taken in
their use. In format they are similar to an ebuild, and indeed are sourced as part of any ebuild using
them. The interpreter is therefore the same, and the same requirements for being parseable hold.

Eclasses must be located in the eclass directory in the top level of the repository—see section 4.6.
Each eclass is a single file named <name>.eclass, where <name> is the name of this eclass, used
by inherit and EXPORT_FUNCTIONS among other places.

10.1 The inherit Command

An ebuild wishing to make use of an eclass does so by using the inherit command in global scope.
This will cause the eclass to be sourced as part of the ebuild—any function or variable definitions
in the eclass will appear as part of the ebuild, with exceptions for certain metadata variables, as
described below.

The inherit command takes one or more parameters, which must be the names of eclasses (exclud-
ing the . eclass suffix and the path). For each parameter, in order, the named eclass is sourced.

Eclasses may end up being sourced multiple times.
The inherit command must also ensure that:

e The ECLASS variable is set to the name of the current eclass, when sourcing that eclass.
e Once all inheriting has been done, the INHERITED metadata variable contains the name of
every eclass used, separated by whitespace.

10.2 Eclass-defined Metadata Keys

The IUSE, REQUIRED_USE, DEPEND, BDEPEND, RDEPEND and PDEPEND variables are handled spe-
cially when set by an eclass. They must be accumulated across eclasses, appending the value set
by each eclass to the resulting value after the previous one is loaded. Then the eclass-defined value
is appended to that defined by the ebuild. In the case of RDEPEND, this is done after the implicit
RDEPEND rules in section 7.3.3 are applied.

10.3 EXPORT_FUNCTIONS

There is one command available in the eclass environment that is neither available nor meaningful in
ebuilds—EXPORT_FUNCTIONS. This can be used to alias ebuild phase functions from the eclass so

49

CHAPTER 10. ECLASSES 50

Listing 10.1: EXPORT_FUNCTIONS example: foo.eclass
foo_src_compile()

{
econf --enable-gerbil \
$(use_enable fnord)
emake gerbil || die "Couldn’t make a gerbil"
emake || die "emake failed"
}

EXPORT_FUNCTIONS src_compile

that an ebuild inherits a default definition whilst retaining the ability to override and call the eclass-
defined version from it. The use of it is best illustrated by an example; this is given in listing 10.1
and is a snippet from a hypothetical foo.eclass.

This example defines an eclass src_compile function and uses EXPORT_FUNCTIONS to alias it.
Then any ebuild that inherits foo.eclass will have a default src_compile defined, but should the
author wish to override it he can access the function in foo.eclass by calling foo_src_compile.

EXPORT_FUNCTIONS must only be used on ebuild phase functions. The function that is aliased must
be named eclassname_phasefunctionname, where eclassname is the name of the eclass.

Chapter 11

The Ebuild Environment

11.1 Defined Variables

The package manager must define the following environment variables. Not all variables are mean-
ingful in all phases; variables that are not meaningful in a given phase may be unset or set to any
value. Ebuilds must not attempt to modify any of these variables, unless otherwise specified.

Because of their special meanings, these variables may not be preserved consistently across all phases
as would normally happen due to environment saving (see 11.2). For example, EBUILD_PHASE is
different for every phase, and ROOT may have changed between the various different pkg_x* phases.
Ebuilds must recalculate any variable they derive from an inconsistent variable.

51

52

*2d0ds [eqO[3 UT A103001Ip Ay} $SAIIE JoU IS PNy “d5exdred Areurq e woiy Jurffeisur udym Juasaid A[Lessaoou JoN,,

'SIy) punode yIom snyj 3snuwr s3duros aingyuoo yons Surfes sprngo oexoed qrTee
3y} puy 03 d[qeLIeA 1Y) dsn $3d1IdS ANFYU0d MY e ddwexa 10) Suntoddns S|JVH Ay Ul 1 s3os 1oFeuew a3eoed dY) Jey) AWNSSE [[S ISNW SP[INGI IOAIMOH "Pa1edaIdop paIapIsuod A[[e1oudd sI A[qeLIeA SIYL.
(¥t 99s) pajepdn usaq sey a3esoed e J1 o3ueyd Ke],

THE EBUILD ENVIRONMENT

CHAPTER 11.

‘A[dde so[qeLIeA 18qO[S 10J 7" UONDS JO SUONOLIISAI YY) UAY) ‘pP[Inge ue jo adoos [eqo[3
oy ut pausIsse s § JI 'Sp[Inga Aq payrpowt aq AN {d}$/{HIANYOM}$ 01 SINBJO(019

TTeasut~oas ‘oTtdwoo oxs Aq pasn ‘K1010011p ping Arerodwe) ayy 01 yred [ny oy, SO *70IS S
‘paureIu0d 9q PINoYs Blep pIingq [[& 219ym ‘A1030911p Sunfiom s, p[inga oy o3 yjed [[nJ 9y, SOX. oniq YIAY0M
“PoIO}S QI8 J[BLIBA ¥) UL SA[Y Y} YOIyMm UI AI030a1Ip 9y} 03 yjed [[ng oy, SR ong ¥IA1SIa
*K100211p Ju9ISIXa-UoU € 0} sjutod YTASATIA 2IoUym uonemis oy 1oj paredard
9q JsnuI p[nqge ue uay) uonsanb ur o3exoed oYy 10§ soqy 110ddns ou sopraoid Liojsodar
B J1 {JSTX9 Jou Aewl J0 ABJA "€'{ UOIDAS 99§ "9[qe[reae a1e (soyojed 1o so[y j1oddns [fews ,2doos 1eqo[3
10J pasn) A1030a11p S9[Y S, a3eyoed oY) WO} sA[Y 9y} a1oym K1030311p ' 03 ied [[nJ ay], SO ‘¢70xs YIASATIIA
‘yy Sunzoddns
Se ¢ 11 9[qel ul pAsy s|dvH 10J A[UQ "9[qeLIeA BIBPRIQW P[INGd TUN~DYUS 9Y) JO JUSW[
[OB2 JO SQWRU JsBq oY) WOIJ PAR[NO[ED ST dN[eA I, "S[EUONIPUOD FS[) JO ASNBI2q ¥ Ul
Pa[qesIp a1k jey) Aue Surpnjour ‘afesoed ay) I0J S[qe[IEAR 9q P[NOD JBY) SI[Y 90INOS [V SOx. oniq Y (Vv]
“9[qerLIeA
BIEpEIOW P[INGd THA~DYS 9Y) JO JUSWIS OB JO SOWRU 9SBQq 9} WIOIJ PAJB[NITED ST dN[eA
JY], "S[eUOTIIPUOD HS() JO ISNBI3q PI[qESIP ATk Jey) AUB 9pN[OUl JOU SO "IN DHUS JO
juouodwos payodrew e ur sreadde)51 woIr oY) Yorym Ul 19pIo) Ul pue ‘doedsoymym Jur yogjegou 3yd
-[ren 1o Surpes] ou M pajeredes ooedsajrym ‘oFexoed ot 10J S[qe[IBAR S[I 90INOS [[V SO ‘x70IS v
TI-HLT 0" LI0FLT 0" L o[dwexa 10§ ‘(Aue JT) UOISIASI PUR UOISISA 95eyoeq SOx nv ¥Ad
"SJSTXd QUOU JI 0. JO ‘UOISIAI 9Feord SOX v ud
‘$,7°0" L o[dwexo IO "UOISIAQI OU [}IM ‘UOISIOA a3eyoed SR nv A
‘sxoq1pe-dde ojdwexs 10j ‘A1030380 S 95eord Ay, onig nv A40991VD
‘wra opdwexa 10J ‘owreu ageyoed oniq nv Nd
"TI-HLT 0 L-wTa o[dwexo 10J ‘(AUe JT) UOISIASI PUB ‘UOISIA ‘QUIeU a3eyoed onq nv ad
HLT 0" L-wia ‘O[dwexe 10 11ed UOISIASI AU INOYIIM ‘UOISIOA pUB dUIRU aFeyoed ON nv d
uondrisa(q 2IUISISUO0)) ur [e39] dqeriep

solqeLeA pauyaq T'TT AqEL

o
v

THE EBUILD ENVIRONMENT

CHAPTER 11.

“Juowraoeydar oy

PUE [[eISUI 3y} JOJ SIN[EA JUIISHIP dABY ISnu J[qeLIea sIy) ‘aexoed v SUI[[eISULSI USYAY “[[EISUIUN PUE [[EISUI UaM13Q Jou Jnq ‘saseyd [[eIsurun 1o [[eIsul JO duanbas pajoauuod J[3urs & ss0108 PaAIssdId pue JUASISUO) ¢

*A10310911p QWOY Y} AJIpow IO peal Aewl JeY) P[INg Ay}

Aq pavoaur swer3oid Aue £q asn 103 A1030011p A1erodwe) 9jerrdordde ue 01 yed [ny oy, onmg nv IW0H
“QAOQE [, 995 ‘A}0IIp SpIngd Aq pasn 9q Jou IsnJAl ‘p[Ings ue Aq
payreo suoneordde Aue 10y ‘A1030011p Areioduwa) 9[qesn € Jo UONBOO[Y} 0) 13S 3q ISNN oniqg nv YIAdWI
‘PITNQ9 93 Aq asn 10J A1030a11p Areroduwrd) e o3 yyed [[ny ayJ, (Arenied nv 1
*1.004g Sunioddns se 411 2[qe1 ul paisy| SIdVH 10} A[UO
xgai1d 39s3j0 o[qeordde Aue sopnjour SiyJ, ‘S[00} P[INq d[qeIndaxa A[edrdAy ‘aNadadd
£q paysnes sauopuadap pring Sururejuod A103oa1p 3001 Ay} 0} yred njosqe yJ, ON *70IS 1004dg
"L00Y¥SASH Sunioddns
Se 11 9[qe) Ul paisy SIIVH 10} A[UQ -o[qeleA XIJTYdH 9Y) OS[E 99§ 9OUSIUIAUOD
10§ ‘S9qELIBA XTATUH PU® LOOYSAS dY) Ul syped Sy Jo UOHBUIILOUOD Y} SUIBIUOD ON *"01s 100YSAST
"100¥SAS Sunioddns se g* [9[qel ut psi] S|dVH 10§ A[UQ "ANIJHA
Aq poysnes sarouapuadop pring Surureluod A1030Ip 3001 Y} 01 yed dnjosqe Y, ON *70IS 100YSAS
‘L 11 21qe: ur p)st] se Juapuadap [dVH St yse[s Surren e jo ooussaid oy, "100¥d
Sunioddns se 11 21qe) Ul paIsI[S[IVH 10J A[UQ "9[qelIeA XTI 29U} OS[e 39S "90USIU
-QAU0D I0J ‘S9[qeLIBA XTI JFYJH pue 100Y Y} Ul syjed oy} JO UOHIBRUSIBOUOD) SUTBIUOD) ON *~8xd 10094
*L'11 21qes ut pajsi se yuapuadap [dvH St yse[s Surfren e jo aouasaid
9y, ‘way) [[ed JOU ISNW SP[INGd OS ‘QUIYJLW P[INg Y} U0 I[qINIAXS q JOU [[IM LO0Y
JO 9pISul SoLIeUIq JUIWUONAUD FUI[IdW0-SSOID B UI By} SI 9J0U JO OS[Y "LOOY UI UIAIS
AI010911p Y} JO IPISINO SI[Y AUB Yonoj Jou ISNW SSI00B WAISASI[Y [[NJ M UNI YOIy
saseyq "paSiow 2q 03 st aFeyoed oy) yorym ojur A1030211p 3001 3y} 03 Yed dnjosqe Y], ON *~3yd 1004
“4Iassy10d Sunioddns se ¢ 9[q
-B) UL pAsI] S[dVH 10} A[uQ "£1010311p sse[o9 s, A1031sodar 1o3sew ay3 03 yed [[ny Yy, ON *70IS YIASSYIDA
“YIQLY0d Sunioddns se
€ 11 91qel ur pa3sy[SIdVH J0J A[uQ "£103011p 9seq s, A10)1sodax 1o)sew oy 03 yred [[ng oy, ON *70IS ¥I1dI140d
uondisaq SIUISISU0) ul [e39] dqelIes

54

THE EBUILD ENVIRONMENT

CHAPTER 11.

‘sasodind (v 10 eiepelow 3 '9) I9Y)0 10

PooInos 3u1aq SI P[Inga Ay} Uaym 2A0Qe Y} JO AUB JOU SI JBY) PIom J[3UIS AUB IO Jasun aq
AeIN “193euew 93eyord oyl AQ paIndaxa sem Jey) uondunj pinga 249y doy ayj 03 Suipiod
-ov pueiexd ‘oyur ‘wrysod ‘wisid ‘asurisod ‘asureid ‘TTeasur ‘aseq ‘eTtdwod
‘ean3tuoo ‘exedeiad ‘yoedun ‘yoregou ‘dnyes ‘STFuUOD son[eA JY) JO QU0 SIAYE],
‘S[relop

I0J T°T°TT UOTIIS 39S "PIINg STy} 10J STef S ANOR [[& JO IS pyWI[ap-aoedsamym v
“JUSWIUOIIAUD P[ING? 3} 0} payiodxa jou

J[qeLiea [emdaduod B sk paurelal sI SIyl ‘S|dvH JOYlo [[e U] ‘IAYIISAISNI Suntoddns se
€11 9[qe} ur pAsI] SIIVH J0J A[uQ "SSUIYy) S[[EISUI SUTOP 2IYM UONEDO[Y} S[ONU0D)
"JUSUIUOIIAUS P[ING? 9} 0} pajiodxa jou J[qerrea Tenjdoouod e se

paurejar st sty ‘S|JVH 1Yo [[e u["HIYLISHQ Suntoddns se ¢ 1] 9[qe) ur paisy| SIJVH
I0J A[uQ ‘s3ury) [[BISUI UTGSOP PUE ‘OWOP ‘QTTOP ‘UTQOP AIYM UOIEIO[9y} S[ONUO0))
*L°11 21qes ut pajsi se yuapuadap [dvH St yse[s Surfren e jo douasaxd

9y, "qd Sunioddns se 4] | 2[qe} Ul pA3sI] SIJVH 10J A[UQ "9[qeLIeA XTI A4 dHT Y} OS[e 99§
"90USTIUIAUOD J0J ‘SI[qRLIBA X T JHYJH pue d ay) ul syjed ay) Jo UONBUIIBOUOD 9} SUTRIUO))
"L 11 9[qe) ur pajst] se Juapuadap VA St yse[s Surren e jo oouasaid

UL, "peSiow ue9q isnf sey 1o 9q 01 IMoqe SI 1Y) aFewr ay) 0) yed [[nJ 9y} SureIUOD)
*L°11 21qes ut pajsi se yuapuadap [dvH St yse[s Surfren e Jo douasaid ay,

“pa[[eIsur 9q prnoys da3exoed) YoIym 0jul A1030a1Ip 2wl) 03 yied [[nJ 9y} sureyuo))
"XI1434dd Sunioddns se 41 [o[qe) ut paisi| SIdVH 10§ A[UQ "¢'1° 1 OS[e

99§ "100Y 0} Unye ‘XTI Jd¥dd UaAIS oy 107 Inq st aSesoed e ‘sonrmn Sunsixe ay) Suisn
a1oym paurrojrad st pring xyord-sso1d B ‘JUSWUOIIAUS SUI[[RD YY) UI J3S ST 9N[eA UI-}[Ing
U} uey) on[eA XTATYJH JUSIQJIP B UayAy JoSeuew a3eyoed oyl Jo uoneeisur uunp
19s sem Jey) xgoid-1osjjo ur-}ing Ay} 0} s}nejop XIAAYdH ‘JUSWUOIIAUS SUI[[ed Y Ul
19S 10U SI XTAAUdT USYA\ -UOHB[[BISUI 19sio ue Jo yred xyoid-19sjjo pasiewtiou ayf,

ON

SOx

ON

ON

(RSN

S9K

ON

S9X

104

v

TTeasSuT 2as

1TeasuT~oas
qsurasod~8yd
‘qasutexd 3yd
‘ITeasut oIs
asurasod—8xd
‘qgsutexd - 3yd

TTeasSuT 2as

184

ASVYHd a1Ingd

asn

JIYLLSAASNI

JAYLLSAd

ad

(ponunuod)

a

XId94dd

uondrsa(q

£IU)SISU0)

ul [839]

dqeLIes

HAYLLSHASNI

44 LLSdd

55

THE EBUILD ENVIRONMENT

CHAPTER 11.

"NOISYHA™ A9~ IOV Id=Y Sunioddns se g o[qe) ut paisi| S|dVH 10§ A[UQ "1 uon
-09s 99§ osmmIayio Surys Aydwe ue 10 ‘[reisur ue jo jred se pa[[eIsuIUN SUIRq I8 oM JI
‘sn Suroeydaz st 1ey) (poyroads J1 ‘uoisiaal Jurpnjour) a3eoed Siyl JO UOISIAA AFULS Y,
"SNOISYIA HNIDY1dEY Suntoddns se 7 11 d[qen

ur paisy| SIdvH 10J A[uQ 7’111 UONDIS 99§ ‘[[BISUL SIY} JO I[NSAI B SB (USNLIMIJAO
Io paqressurun) pase[dor Sureq ore jey) ‘eoedsoyym Surren 1o SuIpes] OU YIM pojeIR
-das aordsaiym ‘(payroads Ji ‘uorsiaal 3urpnpour) a3eyoed SIY) JO SUOISIOA [[B JO ISI]
"HdALTIOHAK Sunioddns

Se 711 9[qe} ul pals SIdVH 10} A[uQ 11 Surfeisur Jnoyiim ageyoed Areurq e Surping ji
LTuopTIng pue ‘a3eyord Areurq e Jurfeisur j1 £xeutq ‘90Inos woij ageyoed e Sur[[eisur
pue 3uIp[Ing JI ©2IN0S I8 SAN[BA J[QISSO4 ‘PpoSiowr Juraq st jey) ageyoed Jo adKy oy,
‘A Sunaoddns se ¢ 11 9[qe) u1 paisi|

SIdVH 10J A[UQ ‘Sp[Inge AQ payrpour aq ABJA "JUS[EAIND? JO puBWIWOD I- sureun ay) £q
POUINIAI SB ‘pAINOIX ISIY SeM P[ING Y} WD) I8 [QUISY FUIUUNI AY) JO UOISIOA Y,
"ONNA™HSVHd a1INgd

Sunzoddns se g'11 9[qey ur paisi| S|dvd 10J A1uQ ‘sesodind (v 10 ejepeiow ‘3 -9) 10410
I0J paoInos Sureq ST P[INge Y} UAYM dA0qQe) Jo Aue jou ST jey) piom I[3uls Aue 1o
josun oq Aejy ‘1o3euewr o3eyoed oyy £q paindoxe sem jeyl uonounj prmnge [oad doy
o) 03 Surproooe pusiexd~3yd ‘oyur~3¥d ‘wrrsod8¥d ‘wrexd~8yd ‘asutrasod~8Sxd
‘asutoxd~8yd ‘TTeasutr~o1s ‘38097018 ‘oTTdwoo " oxs ‘@an8TFucd~oIs ‘exedsad
“oxs ‘yoedunTois ‘yoyegou3yd ‘dnies~3yd ‘81yu05~3d sonjea o) Jo Quo SAYE],

SOX

SOx.

ON

SOK

ON

wrasod - 3yd
‘wxexd~3yd

(1x91 99s) x~8xd

*~8xd

v

184

NOISYIA™ A9~ qIDV'IdHY

SNOISYIA DNIOVIdHY

sanrgoum [4ALTONIN]

mi [Ad]

ONNJ dSVHd a1Indd ONNA-dSVHd-AT1INngd

uondrsa(q

£IU)SISU0)

ul [839]

dqeLIes

CHAPTER 11. THE EBUILD ENVIRONMENT 56

Table 11.2: EAPIs supporting various added env variables

EAPI MERGE_ REPLACING_ REPLACED_ EBUILD_ SYSROOT? BROOT?
TYPE? VERSIONS? BY_VERSION? PHASE_FUNC?
0,1,2,3 No No No No No No
4 Yes Yes Yes No No No
5,6 Yes Yes Yes Yes No No
7 Yes Yes Yes Yes Yes Yes

Table 11.3: EAPIs supporting various removed env variables

EAPI AA? KV? PORTDIR? ECLASSDIR? DESTTREE? INSDESTTREE?

0,1,2,3 Yes Yes Yes Yes Yes Yes
4,5,6 No No Yes Yes Yes Yes
7 No No No No No No

Except where otherwise noted, all variables set in the active profiles’ make.defaults files must
be exported to the ebuild environment. CHOST, CBUILD and CTARGET, if not set by profiles, must
contain either an appropriate machine tuple (the definition of appropriate is beyond the scope of this
specification) or be unset.

PATH must be initialized by the package manager to a “usable” default. The exact value here is left
up to interpretation, but it should include the equivalent “sbin” and “bin” and any package manager
specific directories.

GZIP, BZIP, BZIP2, CDPATH, GREP_OPTIONS, GREP_COLOR and GLOBIGNORE must not be set. In
addition, any variable whose name appears in the ENV_UNSET variable must be unset, for EAPIs
listed in table 5.5 as supporting ENV_UNSET.

The package manager must ensure that the LC_CTYPE and LC_COLLATE locale categories are equiva-
lent to the POSIX locale, as far as characters in the ASCII range (U+0000 to U+007F) are concerned.
Only for EAPIs listed in such a manner in table 11.5.

11.1.1 USE and IUSE handling

This section discusses the handling of four variables:
IUSE is the variable calculated from the TUSE values defined in ebuilds and eclasses.

IUSE_REFERENCEABLE is a variable calculated from IUSE and a variety of other sources de-
scribed below. It is purely a conceptual variable; it is not exported to the ebuild environment.
Values in ITUSE_REFERENCEABLE may legally be used in queries from other packages about an
ebuild’s state (for example, for use dependencies).

IUSE_EFFECTIVE is another conceptual, unexported variable. Values in IUSE_EFFECTIVE are
those which an ebuild may legally use in queries about itself (for example, for the use function,
and for use in dependency specification conditional blocks).

USE is a variable calculated by the package manager and exported to the ebuild environment.

Table 11.4: EAPIs supporting offset-prefix env variables

EAPI EPREFIX? EROOT? ED? ESYSROOT?

0,1,2 No No No No
3,4,5,6 Yes Yes Yes No
7 Yes Yes Yes Yes

ENV-UNSET

[LOCALE-SETTINGS |

CHAPTER 11. THE EBUILD ENVIRONMENT 57

Table 11.5: Locale settings for EAPIs

EAPI Sane LC_CTYPE and LC_COLLATE?
0,1,2,3,4,5 Undefined
6,7 Yes

In all cases, the values of ITUSE_REFERENCEABLE and IUSE_EFFECTIVE are undefined during meta-
data generation.

For EAPIs listed in table 5.4 as not supporting profile defined IUSE injection, IUSE_REFERENCEABLE
is equal to the calculated IUSE value. For EAPIs where profile defined IUSE injection is supported,
TIUSE_REFERENCEABLE is equal to IUSE_EFFECTIVE.

For EAPIs listed in table 5.4 as not supporting profile defined IUSE injection, IUSE_EFFECTIVE
contains the following values:

o All values in the calculated IUSE value.

e All possible values for the ARCH variable.

e All legal use flag names whose name starts with the lowercase equivalent of any value in the
profile USE_EXPAND variable followed by an underscore.

For EAPIs listed in table 5.4 as supporting profile defined IUSE injection, IUSE_EFFECTIVE contains
the following values:

e All values in the calculated IUSE value.

e All values in the profile ITUSE_IMPLICIT variable.

e All values in the profile variable named USE_EXPAND_VALUES_${v}, where ${v} is any value
in the intersection of the profile USE_EXPAND_UNPREFIXED and USE_EXPAND_IMPLICIT vari-
ables.

o All values for ${lower_v}_${x3}, where ${x} is all values in the profile variable named USE_
EXPAND_VALUES_${v}, where ${v} is any value in the intersection of the profile USE_EXPAND
and USE_EXPAND_IMPLICIT variables and ${lower_v} is the lowercase equivalent of ${v}.

The USE variable is set by the package manager. For each value in IUSE_EFFECTIVE, USE shall
contain that value if the flag is to be enabled for the ebuild in question, and shall not contain that
value if it is to be disabled. In EAPIs listed in table 5.4 as not supporting profile defined IUSE
injection, USE may contain other flag names that are not relevant for the ebuild.

For EAPISs listed in table 5.4 as supporting profile defined IUSE injection, the variables named in
USE_EXPAND and USE_EXPAND_UNPREFIXED shall have their profile-provided values reduced to con-
tain only those values that are present in IUSE_EFFECTIVE.

For EAPIs listed in table 5.4 as supporting profile defined TUSE injection, the package manager must
save the calculated value of TUSE_EFFECTIVE when installing a package. Details are beyond the
scope of this specification.

11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION

In EAPIs listed in table 11.2 as supporting it, the REPLACING_VERSIONS variable shall be defined in
pkg_preinst and pkg_postinst. In addition, it may be defined in pkg_pretend and pkg_setup,
although ebuild authors should take care to handle binary package creation and installation correctly
when using it in these phases.

REPLACING_VERSIONS is a list, not a single optional value, to handle pathological cases such as
installing foo-2:2 to replace foo-2:1 and foo-3:2.

In EAPIs listed in table 11.2 as supporting it, the REPLACED_BY_VERSION variable shall be defined
in pkg_prerm and pkg_postrm. It shall contain at most one value.

’ PROFILE-IUSE-INJECT

’ REPLACE-VERSION-VARS

CHAPTER 11. THE EBUILD ENVIRONMENT 58

Table 11.6: EAPIs supporting offset-prefix

EAPI Supports offset-prefix?

0,1,2 No
3,4,5,6,7 Yes

Table 11.7: Variables that always or never end with a trailing slash

EAPI Ends with a trailing slash?
ROOT, EROOT D, ED
0,1,2,3,4,5,6 always always
7 never never

11.1.3 Offset-prefix variables

Table 11.6 lists the EAPIs which support offset-prefix installations. This support was initially added] OFFSET-PREFIX-VARS

in EAPI 3, in the form of three extra variables. Two of these, EROOT and ED, are convenience
variables using the variable EPREFIX. In EAPIs that do not support an offset-prefix, the installa-
tion offset is hardwired to /usr. In offset-prefix supporting EAPIs the installation offset is set as
${EPREFIX}/usr and hence can be adjusted using the variable EPREFIX. Note that the behaviour of
offset-prefix aware and agnostic is the same when EPREFIX is set to the empty string in offset-prefix
aware EAPIs. The latter do have the variables ED and EROQOT properly set, though.

11.1.4 Path variables and trailing slash

Unless specified otherwise, the paths provided through package manager variables do not end with a
trailing slash and cannot be empty. A few exceptions to that rule are listed in table 11.7 along with
applicable EAPIs.

For EAPIs where those variables are defined to always end with a trailing slash, the package manager
guarantees that a trailing slash will always be appended to the path in question. If the path specifies
the system root directory, it will consist of a single slash (/).

For EAPIs where those variables are defined to never end with a trailing slash, the package manager] TRAILING-SLASH
guarantees that a trailing slash will never be present. If the path specifies the system root directory,
it will be empty.

11.2 The State of Variables Between Functions

Exported and default scope variables are saved between functions. A non-local variable set in a
function earlier in the call sequence must have its value preserved for later functions, including
functions executed as part of a later uninstall.

Note: pkg_pretend is not part of the normal call sequence, and does not take part in environment
saving.

Variables that were exported must remain exported in later functions; variables with default visibility
may retain default visibility or be exported. Variables with special meanings to the package manager
are excluded from this rule.

Global variables must only contain invariant values (see 7.1). If a global variable’s value is invariant,
it may have the value that would be generated at any given point in the build sequence.

This is demonstrated by code listing 11.1.

CHAPTER 11. THE EBUILD ENVIRONMENT 59

Listing 11.1: Environment state between functions
GLOBAL_VARIABLE="a"

src_compile()

{
GLOBAL_VARIABLE="b"
DEFAULT_VARIABLE="c"
export EXPORTED_VARIABLE="4"
local LOCAL_VARIABLE="e"

}

src_install(0{
[[${GLOBAL_VARIABLE} == "a" 1] \
|| [[${GLOBAL_VARIABLE} == "b"]] \
|| die "broken env saving for globals"

[[${DEFAULT_VARIABLE} == "c" 1] \
|| die "broken env saving for default"

[[${EXPORTED_VARIABLE} == "d" 11 \
|| die "broken env saving for exported"

[[$(printenv EXPORTED_VARIABLE) == "d" 1] \
|| die "broken env saving for exported"

[[-z ${LOCAL_VARIABLE} 11 \
|| die "broken env saving for locals"

11.3 The State of the System Between Functions

For the sake of this section:

e Variancy is any package manager action that modifies either ROOT or / in any way that isn’t
merely a simple addition of something that doesn’t alter other packages. This includes any
non-default call to any pkg phase function except pkg_setup, a merge of any package or an
unmerge of any package.

e As an exception, changes to DISTDIR do not count as variancy.

e The pkg_setup function may be assumed not to introduce variancy. Thus, ebuilds must not
perform variant actions in this phase.

The following exclusivity and invariancy requirements are mandated:

e No variancy shall be introduced at any point between a package’s pkg_setup being started up
to the point that that package is merged, except for any variancy introduced by that package.

e There must be no variancy between a package’s pkg_setup and a package’s pkg_postinst,
except for any variancy introduced by that package.

¢ Any non-default pkg phase function must be run exclusively.

e Each phase function must be called at most once during the build process for any given pack-
age.

Chapter 12

Available Commands

This chapter documents the commands available to an ebuild. Unless otherwise specified, they may
be aliases, shell functions, or executables in the ebuild’s PATH.

When an ebuild is being sourced for metadata querying rather than for a build (that is to say, when
none of the src_ or pkg_ functions are to be called), no external command may be executed. The
package manager may take steps to enforce this.

12.1 System Commands

Any ebuild not listed in the system set for the active profile(s) may assume the presence of every
command that is always provided by the system set for that profile. However, it must target the
lowest common denominator of all systems on which it might be installed—in most cases this means
that the only packages that can be assumed to be present are those listed in the base profile or
equivalent, which is inherited by all available profiles. If an ebuild requires any applications not
provided by the system profile, or that are provided conditionally based on USE flags, appropriate
dependencies must be used to ensure their presence.

12.1.1 Guaranteed system commands

The following commands must always be available in the ebuild environment:

o All builtin commands in GNU bash, version as listed in table 6.1 on page 29.
e sed must be available, and must support all forms of invocations valid for GNU sed version 4

or later.
e patch must be available, and must support all inputs valid for GNU patch, version as listed in
table 12.1.

e find and xargs must be available, and must support all forms of invocations valid for GNU
findutils version 4.4 or later. Only for EAPIs listed in table 12.1 as requiring GNU find.

Table 12.1: System commands for EAPIs

EAPI GNU £ind? GNU patch version

0,1,2,3,4 Undefined Any
5,6 Yes Any
7 Yes 2.7

60

CHAPTER 12. AVAILABLE COMMANDS 61

Table 12.2: EAPI command failure behaviour

EAPI Command failure = Supports nonfatal is both a function
behaviour nonfatal? and an external command?
0,1,2,3 Non-zero exit No n/a
4,5,6 Aborts Yes No
7 Aborts Yes Yes

12.2 Commands Provided by Package Dependencies

In some cases a package’s build process will require the availability of executables not provided by
the core system, a common example being autotools. The availability of commands provided by the
particular types of dependencies is explained in section 8.1.

12.3 Ebuild-specific Commands

The following commands will always be available in the ebuild environment, provided by the pack-
age manager. Except where otherwise noted, they may be internal (shell functions or aliases) or
external commands available in PATH; where this is not specified, ebuilds may not rely upon either
behaviour.

Unless otherwise noted, any output of these commands ends with a newline.

12.3.1 Failure behaviour and related commands

Where a command is listed as having EAPI dependent failure behaviour, a failure shall either result] DIE-ON-FAILURE
in a non-zero exit status or abort the build process, as determined by table 12.2.

The following commands affect this behaviour:

nonfatal Executes the remainder of its arguments as a command, preserving the exit status. If this
results in a command being called that would normally abort the build process due to a failure,
instead a non-zero exit status shall be returned. Only in EAPISs listed in table 12.2 as supporting
nonfatal.

In EAPIs listed in table 12.2 as having nonfatal defined both as a shell function and as an
external command, the package manager must provide both implementations to account for
calling directly in ebuild scope or through xargs.

Explicit die or assert commands only respect nonfatal when called with the -n option and
in EAPIs supporting this option, see table 12.6.

12.3.2 Banned commands

Some commands are banned in some EAPIs. If a banned command is called, the package manager] BANNED-COMMANDS

must abort the build process indicating an error.

12.3.3 Sandbox commands

These commands affect the behaviour of the sandbox. Each command takes a single directory as
argument. Ebuilds must not run any of these commands once the current phase function has returned.
addread Add a directory to the permitted read list.

addwrite Add a directory to the permitted write list.

CHAPTER 12. AVAILABLE COMMANDS 62

Table 12.3: Banned commands

EAPI Command banned?
dohard dosed einstall dohtml dolib 1libopts
0,1,2,3 No No No No No No
4,5 Yes Yes No No No No
6 Yes Yes Yes No No No
7 Yes Yes Yes Yes Yes Yes

Table 12.4: Package manager query command options supported by EAPIs

EAPI --host-root? -b? -d? -r?
0,1,2,3,4 No No No No
5,6 Yes No No No
7 No Yes Yes Yes

addpredict Add a directory to the predict list. Any write to a location in this list will be denied, but
will not trigger access violation messages or abort the build process.

adddeny Add a directory to the deny list.

12.3.4 Package manager query commands

These commands are used to extract information about the system. Ebuilds must not run any of these
commands in parallel with any other package manager command. Ebuilds must not run any of these
commands once the current phase function has returned.

In EAPIs listed in table 12.4 as supporting option --host-root, this flag as the first argument will
cause the query to apply to the host root. Otherwise, it applies to ROOT.

In EAPIs listed in table 12.4 as supporting options -b, -d and -r, these mutually exclusive flags
as the first argument will cause the query to apply to locations targetted by BDEPEND, DEPEND and
RDEPEND, respectively. When none of these options are given, -r is assumed.

has_version Takes exactly one package dependency specification as an argument. Returns true if a
package matching the specification is installed, and false otherwise.

best_version Takes exactly one package dependency specification as an argument. If a matching
package is installed, prints the category, package name and version of the highest matching
version; otherwise, prints an empty string. The exit code is unspecified.

12.3.5 Output commands

These commands display messages to the user. Unless otherwise stated, the entire argument list is
used as a message, with backslash-escaped characters interpreted as for the echo -e command of
bash, notably \t for a horizontal tab, \n for a new line, and \\ for a literal backslash. Ebuilds must
not run any of these commands once the current phase function has returned.

Unless otherwise noted, output may be sent to stderr or some other appropriate facility. In EAPIs
listed in table 12.5 as not allowing stdout output, using stdout as an output facility is forbidden.

einfo Displays an informational message.
einfon Displays an informational message without a trailing newline.

elog Displays an informational message of slightly higher importance. The package manager may
choose to log elog messages by default where einfo messages are not, for example.

ewarn Displays a warning message. Must not go to stdout.

PM-QUERY-OPTIONS

[OUTPUT-NO-STDOUT

CHAPTER 12. AVAILABLE COMMANDS 63

Table 12.5: Output commands for EAPIs

EAPI Commands can output to stdout? Supports eqawarn?
0,1,2,3,4,5,6 Yes No
7 No Yes

Table 12.6: Properties of die and assert commands in EAPIs

EAPI die and assert
support -n? work in subshell?
03 17 23 3’ 4, 5 NO NO
6 Yes No
7 Yes Yes

eqawarn Display a QA warning message intended for ebuild developers. The package manager
may provide appropriate mechanisms to skip those messages for normal users. Must not go to
stdout. Only available in EAPIs listed in table 12.5 as supporting eqawarn.

eerror Displays an error message. Must not go to stdout.

ebegin Displays an informational message. Should be used when beginning a possibly lengthy
process, and followed by a call to eend.

eend Indicates that the process begun with an ebegin message has completed. Takes one fixed ar-
gument, which is a numeric return code, and an optional message in all subsequent arguments.
If the first argument is 0, prints a success indicator; otherwise, prints the message followed by
a failure indicator. Returns its first argument as exit status.

12.3.6 Error commands

These commands are used when an error is detected that will prevent the build process from com-
pleting. Ebuilds must not run any of these commands once the current phase function has returned.

die If called under the nonfatal command (as per section 12.3.1) and with -n as its first parameter,
displays a failure message provided in its following argument and then returns a non-zero exit
status. Only in EAPIs listed in table 12.6 as supporting option -n. Otherwise, displays a failure
message provided in its first and only argument, and then aborts the build process.

In EAPISs listed in table 12.6 as not providing subshell support, die is not guaranteed to work
correctly if called from a subshell environment.

assert Checks the value of the shell’s pipe status variable, and if any component is non-zero (indi-
cating failure), calls die, passing any parameters to it.

12.3.7 Patch commands

These commands are used during the src_prepare phase to apply patches to the package’s sources.
Ebuilds must not run any of these commands once the current phase function has returned.

eapply Takes zero or more GNU patch options, followed by one or more file or directory paths. Pro-
cesses options and applies all patches found in specified locations according to algorithm 12.1.
If applying the patches fails, it aborts the build using die, unless run using nonfatal, in which
case it returns non-zero exit status. Only available in EAPIs listed in table 12.7 as supporting
eapply.

eapply_user Takes no arguments. Package managers supporting it apply user-provided patches to
the source tree in the current working directory. Exact behaviour is implementation defined and
beyond the scope of this specification. Package managers not supporting it must implement

EQAWARN

NONFATAL-DIE

SUBSHELL-DIE

EAPPLY-USER

CHAPTER 12. AVAILABLE COMMANDS 64

Algorithm 12.1: eapply logic

1: if any parameter is equal to "--" then

2: collect all parameters before the first "--" in the options array

3: collect all parameters after the first "--" in the files array

4: else if any parameter that begins with a hyphen follows one that does not then
5: abort the build process with an error

6: else

7: collect all parameters beginning with a hyphen in the options array
8: collect all remaining parameters in the files array

9: end if

10: if the files array is empty then

11: abort the build process with an error

12: end if

13: for all x in the files array do

14: if $x is a directory then

15: if not any files match $x/*.diff or $x/*.patch then

16: abort the build process with an error

17: end if

18: for all files £ matching $x/*.diff or $x/*.patch, sorted in POSIX locale do

19: call patch -pl -f -gO --no-backup-if-mismatch "${options[@]}" < "$f"
20: if child process returned with non-zero exit status then

21: return immediately with that status

22 end if

23: end for

24: else

25: call patch -pl -f -gO --no-backup-if-mismatch "${options[@]}" < "$x"
26: if child process returned with non-zero exit status then

27: return immediately with that status

28: end if

29: end if

30: end for

31: return shell true (0)

CHAPTER 12. AVAILABLE COMMANDS 65

Table 12.7: Patch commands for EAPIs

EAPI eapply? eapply_user?
0,1,2,3,4,5 No No
6,7 Yes Yes

the command as a no-op. Returns shell true (0) if patches applied successfully, or if no patches
were provided. Otherwise, aborts the build process, unless run using nonfatal, in which
case it returns non-zero exit status. Only available in EAPIs listed in table 12.7 as supporting
eapply_user. In EAPIs where it is supported, eapply_user must be called once in the
src_prepare phase. For any subsequent calls, the command will do nothing and return 0.

12.3.8 Build commands

These commands are used during the src_configure, src_compile, and src_install phases to
run the package’s build commands. Ebuilds must not run any of these commands once the current
phase function has returned.

econf Calls the program’s ./configure script. This is designed to work with GNU Autoconf-
generated scripts. Any additional parameters passed to econf are passed directly to
./configure, after the default options below. econf will look in the current working
directory for a configure script unless the ECONF_SOURCE environment variable is set, in
which case it is taken to be the directory containing it.

econf must pass the following options to the configure script:
e --prefix must default to ${EPREFIX}/usr unless overridden by econf’s caller.
e --mandir must be ${EPREFIX}/usr/share/man
e --infodir must be ${EPREFIX}/usr/share/info
e --datadir must be ${EPREFIX}/usr/share
e --sysconfdir must be ${EPREFIX}/etc
e --localstatedir must be ${EPREFIX}/var/lib

e —-docdir must be ${EPREFIX}/usr/share/doc/${PF}, if the EAPI is listed in ta-
ble 12.8 as using it. This option will only be passed if the string --docdir occurs in the
output of configure --help.

e --htmldir must be ${EPREFIX}/usr/share/doc/${PF}/html, if the EAPI is listed
in table 12.8 as using it. This option will only be passed if the string --htmldir occurs
in the output of configure --help.

e --with-sysroot must be ${ESYSROOT}, if the EAPI is listed in table 12.8 as using it.
This option will only be passed if the string --with-sysroot occurs in the output of
configure --help.

e --build must be the value of the CBUILD environment variable. This option will only
be passed if CBUILD is non-empty.

e --host must be the value of the CHOST environment variable.

e —-target must be the value of the CTARGET environment variable. This option will only
be passed if CTARGET is non-empty.

e --libdir must be set according to algorithm 12.2.

e --disable-dependency-tracking, if the EAPI s listed in table 12.8 as using it. This
option will only be passed if the string --disable-dependency-tracking occurs in
the output of configure --help.

| ECONF-OPTIONS

CHAPTER 12. AVAILABLE COMMANDS 66

Table 12.8: Extra econf arguments for EAPIs

EAPI --disable- --disable- --docdir --htmldir --with-sysroot
dependency-tracking silent-rules
0,1,2,3 No No No No No
4 Yes No No No No
5 Yes Yes No No No
6 Yes Yes Yes Yes No
7 Yes Yes Yes Yes Yes

e --disable-silent-rules, if the EAPI is listed in table 12.8 as using it. This option
will only be passed if the string --disable-silent-rules occurs in the output of
configure --help.

Note that the ${EPREFIX} component represents the same offset-prefix as described in ta-
ble 11.1. It facilitates offset-prefix installations which is supported by EAPIs listed in ta-
ble 11.4. When no offset-prefix installation is in effect, EPREFIX becomes the empty string,
making the behaviour of econf equal for both offset-prefix supporting and agnostic EAPIs.

econf must be implemented internally—that is, as a bash function and not an external script.
Should any portion of it fail, it must abort the build using die, unless run using nonfatal, in
which case it must return non-zero exit status.

Algorithm 12.2: econf --1ibdir logic

S Sy
B S T

R AN A R ol e

let prefix=${ EPREFIX}/usr
if the caller specified --prefix=$p then

let prefix=$p

end if
let libdir=
if the ABI environment variable is set then

let libvar=LIBDIR _$ABI

if the environment variable named by libvar is set then
let libdir=the value of the variable named by libvar

end if

. end if

if libdir is non-empty then

pass --libdir=$prefix/$libdir to configure

end if

emake Calls the $MAKE program, or GNU make if the MAKE variable is unset. Any arguments given

are passed directly to the make command, as are the user’s chosen MAKEQOPTS. Arguments
given to emake override user configuration. See also section 12.1.1. emake must be an external
program and cannot be a function or alias—it must be callable from e.g. xargs. Failure
behaviour is EAPI dependent as per section 12.3.1.

einstall A shortcut for the command given in listing 12.1. Any arguments given to einstall

are passed verbatim to emake, as shown. Failure behaviour is EAPI dependent as per sec-
tion 12.3.1. In EAPIs listed in table 12.3, this command is banned as per section 12.3.2.

The variable ED is defined as in table 11.1 and depends on the use of an offset-prefix. When
such offset-prefix is absent, ED is equivalent to D. ED is always available in EAPIs that support
offset-prefix installations as listed in table 11.4, hence EAPIs lacking offset-prefix support
should use D instead of ED in the command given in listing 12.1. Variable libdir is an
auxiliary local variable whose value is determined by algorithm 12.3.

CHAPTER 12. AVAILABLE COMMANDS 67

Listing 12.1: einstall command

emake \
prefix="${ED}"/usr \
datadir="${ED}"/usr/share \
mandir="${ED}"/usr/share/man \
infodir="${ED}"/usr/share/info \
libdir="${ED}"/usr/${libdir} \
localstatedir="${ED}"/var/1lib \
sysconfdir="${ED}"/etc \
-j1 \
n $@ n \
install

12.3.9 Installation commands

These commands are used to install files into the staging area, in cases where the package’s make
install target cannot be used or does not install all needed files. Except where otherwise stated,
all filenames created or modified are relative to the staging directory including the offset-prefix ED
in offset-prefix aware EAPIs, or just the staging directory D in offset-prefix agnostic EAPIs. Existing
destination files are overwritten. These commands must all be external programs and not bash func-
tions or aliases—that is, they must be callable from xargs. Calling any of these commands without
a filename parameter is an error. Ebuilds must not run any of these commands once the current phase
function has returned.

dobin Installs the given files into DESTTREE/bin, where DESTTREE defaults to /usr. Gives the
files mode 0755 and transfers file ownership to the superuser or its equivalent on the system
or installation at hand. For instance on Gentoo Linux in a non-offset-prefix installation this
ownership is root : root, while on an offset-prefix aware installation this may be joe:users.
Failure behaviour is EAPI dependent as per section 12.3.1.

doconfd Installs the given config files into /etc/conf .d/, by default with file mode 0644, or with
the install options set by the most recent insopts call. Failure behaviour is EAPI dependent
as per section 12.3.1.

dodir Creates the given directories, by default with file mode 0755, or with the install options set
by the most recent diropts call. Failure behaviour is EAPI dependent as per section 12.3.1.

dodoc Installs the given files into a subdirectory under /usr/share/doc/${PF}/ with file mode
0644. The subdirectory is set by the most recent call to docinto. If docinto has not yet
been called, instead installs to the directory /usr/share/doc/${PF}/. For EAPIs listed in
table 12.9 as supporting -r, if the first argument is -r, any subsequent arguments that are
directories are installed recursively to the appropriate location; in any other case, it is an error
for a directory to be specified. Failure behaviour is EAPI dependent as per section 12.3.1.

doenvd Installs the given environment files into /etc/env.d/, by default with file mode 0644, or
with the install options set by the most recent insopts call. Failure behaviour is EAPI
dependent as per section 12.3.1.

doexe Installs the given files into the directory specified by the most recent exeinto call. If
exeinto has not yet been called, behaviour is undefined. Files are installed by default with
file mode 0755, or with the install options set by the most recent exeopts call. Failure
behaviour is EAPI dependent as per section 12.3.1.

dohard Takes two parameters. Creates a hardlink from the second to the first. Both paths are
relative to the staging directory including the offset-prefix ED in offset-prefix aware EAPISs, or
just the staging directory D in offset-prefix agnostic EAPIs. In EAPIs listed in table 12.3, this
command is banned as per section 12.3.2.

doheader Installs the given header files into /usr/include/, by default with file mode 0644, or
with the install options set by the most recent insopts call. If the first argument is -r,
then operates recursively, descending into any directories given. Only available in EAPIs

DOHEADER

CHAPTER 12. AVAILABLE COMMANDS 68

listed in table 12.10 as supporting doheader. Failure behaviour is EAPI dependent as per
section 12.3.1.

dohtml Installs the given HTML files into a subdirectory under /usr/share/doc/$PF/. The sub-
directory is html by default, but this can be overridden with the docinto function. Files to be
installed automatically are determined by extension and the default extensions are css, gif,
htm, html, jpeg, jpg, js and png. These default extensions can be extended or reduced (see
below). The options that can be passed to dohtml are as follows:

-r enables recursion into directories.

-V enables verbosity.

-A adds file type extensions to the default list.

-a sets file type extensions to only those specified.

-f list of files that are able to be installed.

-x list of directories that files will not be installed from (only used in conjunction with -r).
-p sets a document prefix for installed files, not to be confused with the global offset-prefix.

In EAPIs listed in table 12.3, this command is banned as per section 12.3.2. Failure behaviour
is EAPI dependent as per section 12.3.1.

It is undefined whether a failure shall occur if -r is not specified and a directory is encountered.
Ebuilds must not rely upon any particular behaviour.

doinfo Installs the given GNU Info files into the /usr/share/info area with file mode 0644.
Failure behaviour is EAPI dependent as per section 12.3.1.

doinitd Installs the given initscript files into /etc/init.d, by default with file mode 0755, or
with the install options set by the most recent exeopts call. Failure behaviour is EAPI
dependent as per section 12.3.1.

doins Takes one or more files as arguments and installs them into INSDESTTREE, by default with
file mode 0644, or with the install options set by the most recent insopts call. If the first
argument is -r, then operates recursively, descending into any directories given. For EAPIs
listed in table 12.11, doins must install symlinks as symlinks; for other EAPIs, behaviour
is undefined if any symlink is encountered. Failure behaviour is EAPI dependent as per sec-
tion 12.3.1.

dolib.a For each argument, installs it into the appropriate library subdirectory under DESTTREE, as
determined by algorithm 12.3. Files are installed with file mode 0644. Any symlinks are
installed into the same directory as relative links to their original target. Failure behaviour is
EAPI dependent as per section 12.3.1.

dolib.so As for dolib.a except each file is installed with mode 0755.

dolib As fordolib.a except that the default install mode can be overriden with the install options
set by the most recent 1ibopts call. In EAPIs listed in table 12.3, this command is banned as
per section 12.3.2.

doman Installs the given man pages into the appropriate subdirectory of /usr/share/man depend-
ing upon its apparent section suffix (e. g. foo. 1 goes to /usr/share/man/man1/foo. 1) with
file mode 0644.

In EAPIs listed in table 12.12 as supporting language detection by filename, a man page with
name of the form foo.lang.1 shall go to /usr/share/man/lang/manl/foo.1, where lang
refers to a pair of lower-case ASCII letters optionally followed by an underscore and a pair of
upper-case ASCII letters. Failure behaviour is EAPI dependent as per section 12.3.1.

With option -i18n=lang, a man page shall be installed into an appropriate subdirectory of
/usr/share/man/lang (e.g. /usr/share/man/lang/manl/foo.pl.1 would be the desti-
nation for foo.pl.1). The lang subdirectory level is skipped if lang is the empty string. In
EAPIs specified by table 12.12, the -118n option takes precedence over the language code in
the filename.

domo Installs the given .mo files with file mode 0644 into the appropriate subdirectory of the locale
tree, generated by taking the basename of the file, removing the . * suffix, and appending /LC_

| DOMAN-LANGS

DOMO-PATH

CHAPTER 12. AVAILABLE COMMANDS 69

Algorithm 12.3: Determining the library directory

1: if CONF_LIBDIR_OVERRIDE is set in the environment then
2: return CONF_LIBDIR_OVERRIDE

3: end if

4: if CONF_LIBDIR is set in the environment then

5. let LIBDIR_default=CONF_LIBDIR
6
7
8
9

. else
. let LIBDIR_default="1ib”
: end if
. if ABI is set in the environment then
10: let abi=ABI
11: else if DEFAULT_ABI is set in the environment then
12: let abi=DEFAULT_ABI
13: else
14: let abi="default”
15: end if
16: return the value of LIBDIR_$abi

MESSAGES. The name of the installed files is the package name with .mo appended. Failure
behaviour is EAPI dependent as per section 12.3.1. The locale tree location is EAPI dependent
as per table 12.14.

dosbin As dobin, but installs to DESTTREE/sbin.

dosym Creates a symbolic link named as for its second parameter, pointing to the first. If the direc-
tory containing the new link does not exist, creates it. Failure behaviour is EAPI dependent as
per section 12.3.1.

fowners Acts as for chown, but takes paths relative to the image directory. Failure behaviour is
EAPI dependent as per section 12.3.1.

fperms Acts as for chmod, but takes paths relative to the image directory. Failure behaviour is EAPI
dependent as per section 12.3.1.

keepdir For each argument, creates a directory as for dodir, and an empty file whose name starts
with .keep in that directory to ensure that the directory does not get removed by the pack-
age manager should it be empty at any point. Failure behaviour is EAPI dependent as per
section 12.3.1.

newbin As for dobin, but takes two parameters. The first is the file to install; the second is the new
filename under which it will be installed. In EAPIs specified by table 12.13, standard input is
read when the first parameter is - (a hyphen). In this case, it is an error if standard input is a
terminal.

newconfd As for doconfd, but takes two parameters as for newbin.
newdoc As above, for dodoc.

newenvd As above, for doenvd.

newexe As above, for doexe.

newheader As above, for doheader.

newinitd As above, for doinitd.

newins As above, for doins.

newlib.a As above, for dolib.a.

newlib.so As above, for dolib. so.

newman As above, for doman.

newsbin As above, for dosbin.

| NEWFOO-STDIN

CHAPTER 12. AVAILABLE COMMANDS 70

Table 12.9: EAPIs supporting dodoc -r

EAPI Supports dodoc -r?

0,1,2,3 No
4,5,6,7 Yes

Table 12.10: EAPIs supporting doheader and newheader

EAPI Supports doheader and newheader?

0,1,2,3,4 No
5,6,7 Yes

Table 12.11: EAPIs supporting symlinks for doins

EAPI doins supports symlinks?

0,1,2,3 No
4,5,6,7 Yes

Table 12.12: doman language support options for EAPIs

EAPI Language detection by filename? Option -i18n takes precedence?

0,1 No Not applicable
2,3 Yes No
4,5,6,7 Yes Yes

Table 12.13: EAPIs supporting stdin for new* commands

EAPI new* can read from stdin?
0,1,2,3,4 No
5,6,7 Yes

Table 12.14: domo destination path in EAPIs

EAPI Destination path

0,1,2,3,4,5,6 ${DESTTREE}/share/locale
7 /usr/share/locale

CHAPTER 12. AVAILABLE COMMANDS 71

12.3.10 Commands affecting install destinations

The following commands are used to set the various destination trees, all relative to ${ED} in offset-
prefix aware EAPIs and relative to ${D} in offset-prefix agnostic EAPIs, used by the above installa-
tion commands. They must be shell functions or aliases, due to the need to set variables read by the
above commands. Ebuilds must not run any of these commands once the current phase function has
returned.

into Sets the value of DESTTREE for future invocations of the above utilities. Creates the directory
under ${ED} in offset-prefix aware EAPIs or under ${D} in offset-prefix agnostic EAPIs, using
install -d with no additional options, if it does not already exist. Failure behaviour is EAPI
dependent as per section 12.3.1.

insinto Sets the value of INSDESTTREE for future invocations of the above utilities. May create the
directory, as specified for into.

exeinto Sets the install path for doexe and newexe. May create the directory, as specified for into.
docinto Sets the install subdirectory for dodoc et al. May create the directory, as specified for into.
insopts Sets the options passed by doins et al. to the install command.
diropts Sets the options passed by dodir et al. to the install command.
exeopts Sets the options passed by doexe et al. to the install command.

libopts Sets the options passed by dolib et al. to the install command. In EAPIs listed in ta-
ble 12.3, this command is banned as per section 12.3.2.

12.3.11 Commands controlling manipulation of files in the staging area

These commands are used to control optional manipulations that the package manager may perform
on files in the staging directory ED, like compressing files or stripping symbols from object files.

For each of the operations mentioned below, the package manager shall maintain an inclusion list
and an exclusion list, in order to control which directories and files the operation may or may not be
performed upon. The initial contents of the two lists is specified below for each of the commands,
respectively.

Any of these operations shall be carried out after src_install has completed, and before the exe-
cution of any subsequent phase function. For each item in the inclusion list, pretend it has the value
of the ED variable prepended, then:

e Ifitis a directory, act as if every file or directory immediately under this directory were in the
inclusion list.

o If the item is a file, the operation may be performed on it, unless it has been excluded as
described below.

o If the item does not exist, it is ignored.

Whether an item is to be excluded is determined as follows: For each item in the exclusion list,
pretend it has the value of the ED variable prepended, then:

e Ifitis a directory, act as if every file or directory immediately under this directory were in the
exclusion list.

o If the item is a file, the operation shall not be performed on it.

e If the item does not exist, it is ignored.

The package manager shall take appropriate steps to ensure that any operations that it performs on
files in the staging area behave sensibly even if an item is listed in the inclusion list multiple times or
if an item is a symlink.

In EAPIs listed in table 12.15 as supporting controllable compression, the package manager may op-
tionally compress a subset of the files under the ED directory. The package manager shall ensure that
its compression mechanisms behave sensibly even if a file is already compressed. For compression,
the initial values of the two lists are as follows:

DOCOMPRESS

CHAPTER 12. AVAILABLE COMMANDS 72

Table 12.15: Commands controlling manipulation of files in the staging area in EAPIs

EAPI Supports controllable Supports controllable
compression and docompress? stripping and dostrip?
0,1,2,3 No No
4,5,6 Yes No
7 Yes Yes

e The inclusion list contains /usr/share/doc, /usr/share/info and /usr/share/man.
e The exclusion list contains /usr/share/doc/${PF}/html.

In EAPIs listed in table 12.15 as supporting controllable stripping of symbols, the package manager
may strip a subset of the files under the ED directory. For stripping of symbols, the initial values of
the two lists are as follows:

e If the RESTRICT variable described in section 8.2.8 enables a strip token, the inclusion list is
empty; otherwise it contains / (the root path).
e The exclusion list is empty.

The following commands may be used in src_install to alter these lists. It is an error to call any
of these functions from any other phase.

docompress If the first argument is -x, add each of its subsequent arguments to the exclusion list
for compression. Otherwise, add each argument to the respective inclusion list. Only available
in EAPIs listed in table 12.15 as supporting docompress.

dostrip If the first argument is -x, add each of its subsequent arguments to the exclusion list for
stripping of symbols. Otherwise, add each argument to the respective inclusion list. Only
available in EAPIs listed in table 12.15 as supporting dostrip.

12.3.12 USE list functions

These functions provide behaviour based upon set or unset use flags. Ebuilds must not run any of
these commands once the current phase function has returned. It is an error if an ebuild calls any of
these functions in global scope.

Unless otherwise noted, if any of these functions is called with a flag value that is not included in
TUSE_EFFECTIVE, either behaviour is undefined or it is an error as decided by table 12.16.

use Returns shell true (0) if the first argument (a USE flag name) is enabled, false otherwise. If the
flag name is prefixed with !, returns true if the flag is disabled, and false if it is enabled. It is
guaranteed that this command is quiet.

usev The same as use, but also prints the flag name if the condition is met.
useq Deprecated synonym for use.

use_with Has one-, two-, and three-argument forms. The first argument is a USE flag name, the
second a configure option name (${opt}), defaulting to the same as the first argument if not
provided, and the third is a string value (${value}). For EAPIs listed in table 12.17 as not
supporting it, an empty third argument is treated as if it weren’t provided. If the USE flag is set,
outputs --with-${opt}=${value} if the third argument was provided, and --with-${opt}
otherwise. If the flag is not set, then it outputs --without-${opt}.

use_enable Works the same as use_with(), but outputs --enable- or --disable- instead of
--with- or --without-.

usex Accepts at least one and at most five arguments. The first argument is a USE flag name,
any subsequent arguments (${arg2} to ${argbl}) are string values. If not provided,
${arg2} and ${arg3} default to yes and no, respectively; ${arga} and ${arg5} de-
fault to the empty string. If the USE flag is set, outputs ${arg2}${args}. Otherwise, outputs

USE-WITH

CHAPTER 12. AVAILABLE COMMANDS 73

Table 12.16: EAPI behaviour for use queries not in IUSE_EFFECTIVE

EAPI Behaviour

0,1,2,3 Undefined
4,5,6,7 Error

Table 12.17: EAPIs supporting empty third argument in use_with and use_enable

EAPI Supports empty third argument?

0,1,2,3 No
4,5,6,7 Yes

${arg3}${argb}. The condition is inverted if the flag name is prefixed with !. Only available
in EAPIs listed in table 12.18 as supporting usex.

in_iuse Returns shell true (0) if the first argument (a USE flag name) is included in IUSE_
EFFECTIVE, false otherwise. Only available in EAPIs listed in table 12.18 as supporting
in_iuse.

12.3.13 Text list functions

These functions check whitespace-separated lists for a particular value.

has Returns shell true (0) if the first argument (a word) is found in the list of subsequent arguments,
false otherwise. Guaranteed quiet.

hasv The same as has, but also prints the first argument if found.

hasq Deprecated synonym for has.

12.3.14 Version manipulation and comparison commands

These commands provide utilities for working with version strings. Their availability per EAPI is
listed in table 12.19.

For the purpose of version manipulation commands, the specification provides a method for split-
ting an arbitrary version string (not necessarily conforming to section 3.2) into a series of version
components and version separators.

A version component consists either purely of digits ([0-9]+) or purely of uppercase and low-
ercase ASCII letters ([A-Za-z]+). A version separator is either a string of any other characters
([~A-Za-z0-9]) or it occurs at the transition between a sequence of digits and a sequence of letters,
or vice versa. In the latter case, the version separator is an empty string.

The version string is processed left-to-right, with the successive version components being assigned
successive indices starting with 1. The separator following a version component is assigned the index
of the preceding version component. If the first version component is preceded by a non-empty string
of version separator characters, this separator is assigned the index 0.

Table 12.18: EAPIs supporting usex and in_iuse

EAPI usex? in_iuse?
0,1,2,3,4 No No
5 Yes No

6,7 Yes Yes

| VER-COMMANDS

CHAPTER 12. AVAILABLE COMMANDS 74

Table 12.19: EAPIs supporting version manipulation commands

EAPI ver_cut? ver_rs? ver_test?
0,1,2,3,4,5,6 No No No
7 Yes Yes Yes

The version components are presumed present if not empty. The version separators between version
components are always presumed present, even if they are empty. The version separators preceding
the first version component and following the last are only presumed present if they are not empty.

Whenever the commands support ranges, the range is specified as an unsigned integer, optionally
followed by a hyphen (-), which in turn is optionally followed by another unsigned integer.

A single integer specifies a single component or separator index. An integer followed by a hyphen
specifies all components or separators starting with the one at the specified index. Two integers
separated by a hyphen specify a range of versions starting at the index specified by the first and
ending at the second, inclusively.

ver_cut Takes a range as the first argument, and optionally a version string as the second. Prints a
substring of the version string starting at the version component specified as start of the range
and ending at the version component specified as end of the range. If the version string is not
specified, ${PVR} is used.

If the range spans outside the present version components, the missing components and sepa-
rators are presumed empty. In particular, the range starting at zero includes the zeroth version
separator if present, and the range spanning past the last version component includes the suffix
following it if present. A range that does not intersect with any present version components
yields an empty string.

ver_rs Takes one or more pairs of arguments, optionally followed by a version string. Every argu-
ment pair specifies a range and a replacement string. Prints a version string after performing
the specified separator substitutions. If the version string is not specified, ${PVR} is used.

For every argument pair specified, each of the version separators present at indices specified
by the range is replaced with the replacement string, in order. If the range spans outside the
range of present version separators, it is silently truncated.

ver_test Takes two or three arguments. In the 3-argument form, takes an LHS version string, fol-
lowed by an operator, followed by an RHS version string. In the 2-argument form, the first
version string is omitted and ${PVR} is used as LHS version string. The operator can be -eq
(equal to), -ne (not equal to), -gt (greater than), -ge (greater than or equal to), -1t (less than)
or -1le (less than or equal to). Returns shell true (0) if the specified relation between the LHS
and RHS version strings is fulfilled.

Both version strings must conform to the version specification in section 3.2. Comparison is
done using algorithm 3.1.

12.3.15 Misc commands

The following commands are always available in the ebuild environment, but don’t really fit in any of
the above categories. Ebuilds must not run any of these commands once the current phase function
has returned.

dosed Takes any number of arguments, which can be files or sed expressions. For each argument,
if it names, relative to ED (offset-prefix aware EAPIs) or D (offset-prefix agnostic EAPIs) a file
which exists, then sed is run with the current expression on that file. Otherwise, the current
expression is set to the text of the argument. The initial value of the expression is s : ${ED}: : g
in offset-prefix aware EAPIs and s: ${D}: : g in offset-prefix agnostic EAPIs. In EAPISs listed
in table 12.3, this command is banned as per section 12.3.2.

CHAPTER 12. AVAILABLE COMMANDS 75

unpack Unpacks one or more source archives, in order, into the current directory. For compressed
files, creates the target file in the current directory, with the compression suffix removed from
its name. After unpacking, must ensure that all filesystem objects inside the current working
directory (but not the current working directory itself) have permissions a+r,u+w,go-w and
that all directories under the current working directory additionally have permissions a+x.

Arguments to unpack are interpreted as follows:

e A filename without path (i. e., not containing any slash) is looked up in DISTDIR.

e An argument starting with the string ./ is a path relative to the working directory.

e Otherwise, for EAPISs listed in table 12.20 as supporting absolute and relative paths, the] UNPACK-ABSOLUTE
argument is interpreted as a literal path (absolute, or relative to the working directory);
for EAPISs listed as not supporting such paths, unpack shall abort the build process.

Any unrecognised file format shall be skipped silently. If unpacking a supported file format
fails, unpack shall abort the build process.

Must be able to unpack the following file formats, if the relevant binaries are available:] UNPACK-EXTENSIONS

e tar files (x.tar). Ebuilds must ensure that GNU tar is installed.
e gzip-compressed files (*.gz, *.Z). Ebuilds must ensure that GNU gzip is installed.

e gzip-compressed tar files (*.tar.gz, *.tgz, *.tar.Z). Ebuilds must ensure that
GNU gzip and GNU tar are installed.

e bzip2-compressed files (*.bz2, *.bz). Ebuilds must ensure that bzip2 is installed.

e bzip2-compressed tar files (*.tar.bz2, *.tbz2, *.tar.bz, *.tbz). Ebuilds must
ensure that bzip2 and GNU tar are installed.

e zipfiles (*.zip, *.ZIP, *.jar). Ebuilds mustensure that Info-ZIP Unzip is installed.
e 7zip files (x.7z, *.7Z). Ebuilds must ensure that P7ZIP is installed.
e rar files (*.rar, *.RAR). Ebuilds must ensure that RARLAB’s unrar is installed.

e LHA archives (*.LHA, *.LHa, *.lha, *.1lzh). Ebuilds must ensure that the lha pro-
gram is installed.

e ar archives (*.a). Ebuilds must ensure that GNU binutils is installed.

e deb packages (*.deb). Ebuilds must ensure that the deb2targz program is installed on
those platforms where the GNU binutils ar program is not available and the installed ar
program is incompatible with GNU archives. Otherwise, ebuilds must ensure that GNU
binutils is installed.

e lzma-compressed files (*.1zma). Ebuilds must ensure that XZ Utils is installed.

e lzma-compressed tar files (*.tar.lzma). Ebuilds must ensure that XZ Utils and GNU
tar are installed.

e xz-compressed files (*.xz). Ebuilds must ensure that XZ Utils is installed. Only for
EAPIs listed in table 12.21 as supporting . xz.

e xz-compressed tar files (*.tar.xz, *.txz). Ebuilds must ensure that XZ Utils and
GNU tar are installed. Only for EAPIs listed in table 12.21 as supporting .tar.xz or
.txz.

It is up to the ebuild to ensure that the relevant external utilities are available, whether by being
in the system set or via dependencies.

unpack matches filename extensions in a case-insensitive manner, for EAPIs listed such in] UNPACK-IGNORE-CASE

table 12.20.
inherit See section 10.1.

default Calls the default_ function for the current phase (see section 9.1.17). Must not be called if
the default_ function does not exist for the current phase in the current EAPI. Only available
in EAPIs listed in table 12.22 as supporting default.

CHAPTER 12. AVAILABLE COMMANDS

76

Table 12.20: unpack behaviour for EAPIs

EAPI Supports absolute and relative paths? Case-insensitive matching?
0,1,2,3,4,5 No No
6,7 Yes Yes

Table 12.21: unpack extensions for EAPIs

EAPI .xz? .tar.xz? .txz?
0,1,2 No No No
3,4,5 Yes Yes No
6,7 Yes Yes Yes

einstalldocs Takes no arguments. Installs the files specified by the DOCS and HTML_DOCS variables

or a default set of files, according to algorithm 12.4. If called using nonfatal and any of the
called commands returns a non-zero exit status, returns immediately with the same exit status.
Only available in EAPIs listed in table 12.22 as supporting einstalldocs.

Algorithm 12.4: einstalldocs logic

e S A S > ey

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

save the value of the install directory for dodoc
set the install directory for dodoc to /usr/share/doc/${PF}
if the DOCS variable is a non-empty array then

call dodoc -r "${DOCS[@]}"
else if the DOCS variable is a non-empty scalar then

call dodoc -r ${DOCS}
else if the DOCS variable is unset then

for all 4 matching the filename expansion of README* ChangeLog AUTHORS NEWS TODO

CHANGES THANKS BUGS FAQ CREDITS CHANGELQG do

if file d exists and has a size greater than zero then
call dodoc with d as argument
end if

end for
end if
set the install directory for dodoc to /usr/share/doc/${PF}/html
if the HTML_DOCS variable is a non-empty array then

call dodoc -r "${HTML_DOCS[@]}"
else if the HTML_DOCS variable is a non-empty scalar then

call dodoc -r ${HTML_DOCS}
end if
restore the value of the install directory for dodoc
return shell true (0)

get_libdir Prints the libdir name obtained according to algorithm 12.5. Only available in EAPIs

listed in table 12.22 as supporting get_libdir.

12.3.16 Debug commands

The following commands are available for debugging. Normally all of these commands should
be no ops; a package manager may provide a special debug mode where these commands instead
do something. Ebuilds must not run any of these commands once the current phase function has
returned.

debug-print If in a special debug mode, the arguments should be outputted or recorded using some

kind of debug logging.

EINSTALLDOCS

GET-LIBDIR

CHAPTER 12. AVAILABLE COMMANDS 77

Algorithm 12.5: get_libdir logic

1: let libdir=lib

2: if the ABI environment variable is set then

3: let libvar=LIBDIR_$ABI

4. if the environment variable named by libvar is set then
5: let libdir=the value of the variable named by libvar
6

7

8

end if
. end if
: print the value of libdir

Table 12.22: Misc commands for EAPIs

EAPI default? einstalldocs? get_libdir?

0,1 No No No
2,3,4,5 Yes No No
6,7 Yes Yes Yes

debug-print-function Calls debug-print with $1: entering function as the first argument
and the remaining arguments as additional arguments.

debug-print-section Calls debug-print withnow in section $*.

12.3.17 Reserved commands and variables

Except where documented otherwise, all functions and variables that contain any of the following
strings (ignoring case) are reserved for package manager use and may not be used or relied upon by
ebuilds:

__ (two underscores) at beginning of string
abort

dyn

ebuild

hook

paludis

portage

prep

Chapter 13
Merging and Unmerging

Note: In this chapter, file and regular file have their Unix meanings.

13.1 Opverview

The merge process merges the contents of the D directory onto the filesystem under ROOT. This is not
a straight copy; there are various subtleties which must be addressed.

The unmerge process removes an installed package’s files. It is not covered in detail in this specifi-
cation.

13.2 Directories

Directories are merged recursively onto the filesystem. The method used to perform the merge is not
specified, so long as the end result is correct. In particular, merging a directory may alter or remove
the source directory under D.

Ebuilds must not attempt to merge a directory on top of any existing file that is not either a directory
or a symlink to a directory.

13.2.1 Permissions
The owner, group and mode (including set*id and sticky bits) of the directory must be preserved,
except as follows:

e Any directory owned by the user used to perform the build must become owned by the root
user.

e Any directory whose group is the primary group of the user used to perform the build must
have its group be that of the root user.

On SELinux systems, the SELinux context must also be preserved. Other directory attributes, in-
cluding modification time, may be discarded.

13.2.2 Empty directories

Behaviour upon encountering an empty directory is undefined. Ebuilds must not attempt to install an
empty directory.

78

CHAPTER 13. MERGING AND UNMERGING 79

Table 13.1: Preservation of file modification times (mtimes)

EAPI mtimes preserved?

0,1,2 Undefined
3,4,5,6,7 Yes

13.3 Regular Files

Regular files are merged onto the filesystem (but see the notes on configuration file protection, be-
low). The method used to perform the merge is not specified, so long as the end result is correct. In
particular, merging a regular file may alter or remove the source file under D.

Ebuilds must not attempt to merge a regular file on top of any existing file that is not either a regular
file or a symlink to a regular file.

13.3.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the file must be preserved, except
as follows:

e Any file owned by the user used to perform the build must become owned by the root user.

e Any file whose group is the primary group of the user used to perform the build must have its
group be that of the root user.

e The package manager may reduce read and write permissions on executable files that have a
set*id bit set.

On SELinux systems, the SELinux context must also be preserved. Other file attributes may be
discarded.

13.3.2 File modification times

In EAPIs listed in table 13.1, the package manager must preserve modification times of regular files.
This includes files being compressed before merging. Exceptions to this are files newly created by
the package manager and binary object files being stripped of symbols.

When preserving, the seconds part of every regular file’s mtime must be preserved exactly. The sub-
second part must either be set to zero, or set to the greatest value supported by the operating system
and filesystem that is not greater than the sub-second part of the original time.

For any given destination filesystem, the package manager must ensure that for any two preserved
files a, b in that filesystem the relation mtime(a) < mtime(b) still holds, if it held under the original
image directory.

In other EAPIs, the behaviour with respect to file modification times is undefined.

13.3.3 Configuration file protection

The package manager must provide a means to prevent user configuration files from being overwrit-
ten by any package updates. The profile variables CONFIG_PROTECT and CONFIG_PROTECT_MASK
(section 5.3) control the paths for which this must be enforced.

In order to ensure interoperability with configuration update tools, the following scheme must be
used by all package managers when merging any regular file:

1. If the directory containing the file to be merged is not listed in CONFIG_PROTECT, and is not a
subdirectory of any such directory, and if the file is not listed in CONFIG_PROTECT, the file is
merged normally.

’ MTIME-PRESERVE

CHAPTER 13. MERGING AND UNMERGING 80

2. If the directory containing the file to be merged is listed in CONFIG_PROTECT_MASK, or is a
subdirectory of such a directory, or if the file is listed in CONFIG_PROTECT_MASK, the file is
merged normally.

3. If no existing file with the intended filename exists, or the existing file has identical content to
the one being merged, the file is installed normally.

4. Otherwise, prepend the filename with . _c£fg0000_. If no file with the new name exists, then
the file is merged with this name.

5. Otherwise, increment the number portion (to form ._cfg0001_<name>) and repeat step 4.
Continue this process until a usable filename is found.

6. If 9999 is reached in this way, behaviour is undefined.

13.4 Symlinks

Symlinks are merged as symlinks onto the filesystem. The link destination for a merged link shall
be the same as the link destination for the link under D, except as noted below. The method used
to perform the merge is not specified, so long as the end result is correct; in particular, merging a
symlink may alter or remove the symlink under D.

Ebuilds must not attempt to merge a symlink on top of a directory.

13.4.1 Rewriting

Any absolute symlink whose link starts with D must be rewritten with the leading D removed. The
package manager should issue a notice when doing this.

13.5 Hard Links

A hard link may be merged either as a single file with links or as multiple independent files.

13.6 Other Files

Ebuilds must not attempt to install any other type of file (FIFOs, device nodes etc).

Chapter 14

Metadata Cache

14.1 Directory Contents

The metadata/cache directory, if it exists, contains directories whose names are the same as cat-
egories in the repository. Each subdirectory may optionally contain one file per package version in
that category, named <package>-<version>, in the format described below.

The metadata cache may be incomplete or non-existent, and may contain additional bogus entries.

14.2 Cache File Format

Each cache file contains the textual values of various metadata keys, one per line, in the following
order. Other lines may be present following these; their meanings are not defined here.

Build-time dependencies (DEPEND)
Run-time dependencies (RDEPEND)
Slot (SLOT)
Source tarball URIs (SRC_URI)
RESTRICT
Package homepage (HOMEPAGE)
Package license (LICENSE)
Package description (DESCRIPTION)
9. Package keywords (KEYWORDS)
10. Inherited eclasses (INHERITED)
11. Use flags that this package respects (IUSE)
12. Use flags that this package requires (REQUIRED_USE). Blank in some EAPISs; see table 7.2.
13. Post dependencies (PDEPEND)
14. Build-time dependencies for CBUILD host (BDEPEND). Blank in some EAPIs; see table 8.3.
15. The ebuild API version to which this package conforms (EAPI)
16. Properties (PROPERTIES). In some EAPIs, may optionally be blank, regardless of ebuild meta-
data; see table 7.2.
17. Defined phases (DEFINED_PHASES). In some EAPIs, may optionally be blank, regardless of
ebuild metadata; see table 7.4.
18. Blank lines to pad the file to 22 lines long

PN LD =

Future EAPIs may define new variables, remove existing variables, change the line number or format
used for a particular variable, add or reduce the total length of the file and so on. Any future EAPI that
uses this cache format will continue to place the EAPI value on line 15 if such a concept makes sense
for that EAPI, and will place a value that is clearly not a supported EAPI on line 15 if it does not.

81

Chapter 15

Glossary

This section contains explanations of some of the terms used in this document whose meaning may
not be immediately obvious.

qualified package name A package name along with its associated category. For example,
app-editors/vimis a qualified package name.

new-style virtual A new-style virtual is a normal package in the virtual category which installs
no files and uses its dependency requirements to pull in a ‘provider’. Historically, old-style
virtuals required special handling from the package manager; new-style virtuals do not.

stand-alone repository An (ebuild) repository which is intended to function on its own as the only,
or primary, repository on a system. Contrast with slave repository below.

slave repository, non-stand-alone repository An (ebuild) repository which is not complete enough
to function on its own, but needs one or more master repositories to satisfy dependencies and
provide repository-level support files. Known in Portage as an overlay.

master repository See above.

82

Bibliography

[1] Michat Gérny. GLEP 68: Package and category metadata. https://www.gentoo.org/glep/
glep-0068.html, April 2016.

[2] Piotr Jaroszynski. GLEP 55: Use EAPI-suffixed ebuilds. https://www.gentoo.org/glep/
glep-0055.html, December 2007.

[3] Marius Mauch. GLEP 44: Manifest2 format. https://www.gentoo.org/glep/glep-0044.
html, December 2005.

[4] Jason Stubbs. GLEP 37: Virtuals deprecation. https://www.gentoo.org/glep/glep-
0037 .html, April 2005.

83

https://www.gentoo.org/glep/glep-0068.html
https://www.gentoo.org/glep/glep-0068.html
https://www.gentoo.org/glep/glep-0055.html
https://www.gentoo.org/glep/glep-0055.html
https://www.gentoo.org/glep/glep-0044.html
https://www.gentoo.org/glep/glep-0044.html
https://www.gentoo.org/glep/glep-0037.html
https://www.gentoo.org/glep/glep-0037.html

Appendix A

metadata.xml

The metadata.xml file is used to contain extra package- or category-level information beyond what
is stored in ebuild metadata. Its exact format is strictly beyond the scope of this document, and is
described in GLEP 68 [1].

84

Appendix B

Unspecified Items

The following items are not specified by this document, and must not be relied upon by ebuilds. This
is, of course, an incomplete list—it covers only the things that the authors know have been abused in
the past.

The FEATURES variable. This is Portage specific.

Similarly, any EMERGE_ variable and any PORTAGE_ variable.

Any Portage configuration file.

The VDB (/var/db/pkg). Ebuilds must not access this or rely upon it existing or being in

any particular format.

e The portageq command. The has_version and best_version commands are available as
functions.

e The emerge command.

e Binary packages.

e The PORTDIR_OVERLAY variable, and overlay behaviour in general.

85

Appendix C

Historical Curiosities

Long-obsolete Features

The items described in this section are included for information only. Unless otherwise noted, they
were deprecated or abandoned long before EAPI was introduced. Ebuilds must not use these features,
and package managers should not be changed to support them.

If-else USE blocks

Historically, Portage supported if-else use conditionals, as shown by listing C.1. The block before
the colon would be taken if the condition was met, and the block after the colon would be taken if
the condition was not met.

CVS versions

Portage has very crude support for CVS packages. The package foo could contain a file named
foo-cvs.1.2.3.ebuild. This version would order higher than any non-CVS version (including
foo-2.ebuild). This feature has not seen real world use and breaks versioned dependencies, so it
must not be used.

use.defaults

The use.defaults file in the profile directory was used to implement ‘autouse’—switching USE
flags on or off depending upon which packages are installed. It was deprecated long ago and finally
removed in 2009.

Listing C.1: If-else use blocks

DEPEND="
flag? (
taken/if-true
) (
taken/if-false
)

86

APPENDIX C. HISTORICAL CURIOSITIES 87

Retroactive Changes

In some exceptional cases, changes to the specification have been approved by the Gentoo Council
without introducing a new EAPI. This section lists such retroactive changes.

Bash version

EAPIs 0, 1 and 2 originally specified GNU Bash version 3.0. This was retroactively updated to
version 3.2 (see table 6.1) in November 2009.

Old-style virtuals

Historically, virtuals were special packages rather than regular ebuilds. An ebuild could specify in
the PROVIDE metadata that it supplied certain virtuals, and the package manager had to bear this in
mind when handling dependencies.

Old-style virtuals were supported by EAPIs 0, 1, 2, 3 and 4. They were phased out via GLEP 37 [4]
and finally removed in 2011.

EAPI parsing

The method to specify the EAPI of an ebuild used to be a shell variable assignment, and the package
manager had to source the ebuild in order to determine the EAPI. Therefore any ebuild using a future
EAPI would still have to be sourceable by old package managers, which imposed restrictions e. g. on
updating the Bash version or on possible changes of global scope functions. Several approaches to
overcome this limitation were discussed, notably GLEP 55 [2], which was rejected though.

The current syntax of the EAPI assignment statement (see section 7.3.1), allowing the package man-
ager to obtain the EAPI from the ebuild by a regular expression match and without sourcing it, was
introduced in May 2012.

Package names

Previously, package names were only required not to end in a hyphen followed by one or more digits.
In October 2012 this was tightened to the specification in section 3.1.2, namely that they must not
end in a hyphen followed by anything resembling a package version.

Asterisk in dependency specification

In the = dependency operator specified in section 8.2.6.1, an asterisk used to induce string prefix
comparison instead of the normal version comparison logic. That could lead to surprising results,
e.g. =dev-lang/perl-5.2* matching dev-lang/perl-5.22.0. Moreover, implementation in
package managers deviated from what was specified.

String prefix matching was effective in EAPIs 0, 1, 2, 3, 4 and 5. It was retroactively dropped in
favour of the current behaviour in October 2015.

Empty dependency groups

The dependency specification format (see section 8.2) originally permitted all-of, any-of, exactly-
one-of, at-most-one-of and use-conditional groups with zero sub-elements. However, such empty
groups were neither supported by all package managers nor used in ebuilds. They were dropped
from the specification in October 2017.

Appendix D

Feature Availability by EAPI

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.
For lack of space, EAPIs 0, 1, 2, and 3 have been consolidated into a single column in the table
below; entries marked with an asterisk differ between these EAPIs. See the 2012-09-20 edition of
this document for a complete table of previous EAPIs.

88

89

APPENDIX D. FEATURE AVAILABILITY BY EAPI

SOx
(4

SOx

9

SOX

SOx
[euonIpuo)
Suong
AeIM
J[L1s-4

S9x
JoreradQ
pue pawreN
SOX

ON

SOX

S9x.

SOx.

ON

SOX

SOX

S9x.

SOx

(A%

SOX

ON

SOX

SOx

)4
C

SO

9

SO

SOx
[euonIpuo)
Suong
eom
J[h1s-4

SOx
JojeradQ
pue powreN
SO

SO

SOX

ON

SOK.

ON

SO

SOX

SOX

SOK.

(44

SO
reuondo
ON

ON

SOX.
C

Sox

do-ou

S9x

SOX
[euonipuo)
3uong
eam
J[hIs-4

SOX
Jo0jeradQ
pue powreN
Sox

S9x

S9x

ON

SOK.

ON

Sox

S9x

SOX

ON

e

Sox
reuondo
ON

ON

ON

[4

Sox
do-ou
Sax
SOX
[euonipuo)
3uons
oM
J1A15-4
ON

pauweN
SOX

SOX

ON

ON

SOK

ON

SOX

SOX

SOK.

ON

e

ON
reuondo
ON

ON

ON

Sox
ON

ON
Areuondo
Sox
Areuondo
ON

ES

ON

(3

ON
reuondo
ON

ON

yid s1sa1-1orered
¢d oidwioo-o1s
¢d 2Im3yuoo-a1s
7d aredaid-o1s
7d aredord-o1s
1+d puojord-3xd
1+d Yorq[rej-npyiom-s
g¢d y1Suans-3ueq
g¢d yaSuans-3ueq
1¢d sdop-asn

g¢d j0[s-qns

g¢d sdap-10[s

0td smo1Te-1In-018
9¢d sdnoi3-dop-Aydwo
G¢d jo-auo-jsow-je
¢d puadopq

¢¢d soseyd-pauyop
7¢d puadop-puadopi
1¢d sentadoid

1€d osn-parnbaz

1¢d synejop-asnt

6¢d qor3[rey

67d uorsioa-yseq

Gzd yseworqels

Gzd popiaoid-oSeyoed
t¢d sap-oyy-o[yoid
61d 1p-ysewr-o3exyoed

$189) [o[[eIRd
9[A1s oTTdWOD OIS
2IN3TJUOD OIS
9[A)s exedsad oas
axedsad oas
puszexd~8xd
Yorq[re] YIAYHOM 01 S
SINI0Iq i i

SIO0[]q j
sorouspuadap asn
$10[S-qng

sarouapuadap 10[S

SMOLTe THN ™ DYUS

yoyew sdnoi3 __ | | Aidwyg
sdnois () &4

anadaad
SASYHd ™ qINIAAA
ANIdId=aNad3aH
SdILYdd0dd
dsn~qI¥Inday

SIneJop d4SNT

adoos [eqo[3 ur qoT3TTRI
UOISIA ysSeq
uro10j/3unysew asn [qels
poptaoxd - oleyoed
SOLIOJOAIIP S SO d[JoId
K1030011p ¥seuw* oFeyoed

SIAVH

€T1T0

UIIYY

aamyed

SIAVH Ul sa1mes :1°(2[qeL

90

APPENDIX D. FEATURE AVAILABILITY BY EAPI

[eUIIXa / UOTIOUN]
SOX

SOX

LT

ON

SO

SOX

SOX

SOX

SO

SO

SOX

SOX

ON

ON

ON

SO

SOX

ON

ON

ON

18877018
‘ITTeasut oas
‘oTtdwoo~oIs
‘9In3TFUOD OIS
‘oxedead oas
‘soedunoas
‘qoqegou~3yd
qog

9

SOX

SOX

SOX

Auy

SOX

SOX

SOX

SOX

SOX

SOX

ON

SOX

SOX

ON

SOX

SO

ON

ON

SOX

SOX

ON

18997018
‘ITe3sur oas
‘oTtdwoo~oIs
‘9IN8TFUOD OIS
‘oxedead oas
‘yoedun~oas
‘qoqegou—3yd
pog

9

SOx

SO

SO

Auy

S9x

SOx

SO

SO

SOX
paugepur)

ON

SOx

SO

ON

SO

SOx

ON

ON

SO

SO

ON

18997018
‘ITeasutT oIs
‘ortdwoo " oas
‘9In38T FUOD OIS
‘exedead oas
‘soedun~oas
‘gogeyou~3yd
pog

14

Sox

SO
paugepur)
Auy

Sax

Sox

SO

SO

ON

paugopun

ON

Sox

ON

ON

SOX

Sax

ON

ON

SO

SOX

ON

18997018
‘ITeasut oIs
‘ortdwoo~oIs
‘9aIn8T JU0D DI
‘exedead oas
“foedun~oIs
‘gogeyou—3yd
qog

14

ON
ON

paugepur)

Auy
SOx.
*
ON
ON
ON

pouyapun

ON
ON
ON
SOX
SOX
SOX
ON
ON
SOX
SOX
SOX

*

pojreisug
do-ou

19d e1ejUOU

19d ainjrej-uo-oIp
09d pug-nu3

09d yoyed-nu3

gGd yses-3uryren

g¢d s1ea-xyyaid-1asjjo
1.6d s1ea-uorsioa-aoe[dal
1.6d s1ea-uorsioa-aoejda
£.6d 109[ur-asnr-oyoxd
9¢d s3umaes-o1eo0|
9¢d 19sun-Auo

¢cd odK1-0310wW

¢cd ounj-aseyd-prmnge
god Ay

$6d oamysopsur

ycd 9amsap

¢cd 1001q

¢cd 100154$

¢cd mpsse[o9

¢cd xpyod

zcd ee

Ld sounj-aseyd-jnejop
9d ojur-3yd
Gd [reisur-ois

TeieJuou

9Ip sanInn SO
(AND St puty
uoIsIoA yosed NND
'019 (Ul yse[s Surjreiy,
10043 ‘ad ‘XIJ34dd
NOISYIA™ A9 QIOVIdAY
SNOISYAA HNIDVIdIY
uonoafur AT 9[yoid
s3uras 9[eo0] Jues
IISNN~ANA

AdAL IDHAN
ONNA~ASVHd a1Indd
A

HI4LLSAASNI
J49ILLSEd

10044

LO0YSASH ‘LO0YSAS
HIASSYIOH
dIALrd0d

Vv

suonouny oseyd ~aTneFep
oyut~8yd
J[A)S TTeISUT OIS

SIAVH

€TT0

DUIYIY

aanyedq

91

APPENDIX D. FEATURE AVAILABILITY BY EAPI

SOX ON ON ON ON 7, d dinsop dtaasop
SOX ON ON ON ON zL,d digsop Surddins s[qerjonuo)
SOX SOX SOX SOX ON 1,d ssaxdwooop ssoxdwooop
SOX SOX SR SOX. ON 1.d ssaxdwooop uo1ssaxdwod J[qe[[oNuo)
SOx SOX SOX ON ON 69d urpis-oojmau urps yoddns xmeu
asn/ {3491183a}$ {3491153a}$ {3991153a}$ {3991153a}$ 89d yred-owop yied uoneunsop owop
SAX SAX SOA Sox % 89d s3ue[-uewop 9ouopadald ugTI- ueWOpP
SOX SN SOA SOx * 89d s3ue[-uewiop saSen3ue| wewop
SO SOX SOX SR ON 89d surop SYUITWAS SI[pUBY SUTOP
S9x S9x SOX ON ON £9d 1opeayop Iopestop
SOx SOX SOX SOX ON 19d 2opop I- 20pop
JOO0ISAS Iim
“Ip[uny “1poop IIp[uny “1poop
SaINI JUI[IS ‘S[NI JUIIS SO[NI JUS[IS
J[qesIp ‘Suryoen J[qesIp ‘Suryoen 9[qesIp ‘Sunyoen Sunyoen
Kouopuadap Kouapuadap Kouapuadap Kouapuadop
J[qesip J[qesIp J[qesIp q[qesIp QUON ¢9d suondo-juooe sjuowngIe Fuoos
SOX SOX ON ON ON ¢9d 1osn-A1ddes xosn~£1ddes
SOX SOX ON ON ON ¢9d A1ddeo £1ddes
SO ON ON ON ON €9d a1p-[joysqns [[°ysqns ur sTp
SOx. S9x ON ON ON £9d arp-Tejejuou u- oTp
SAX ON ON ON ON ¢9d uremebo uxenebs
ON SOX. SOX SOX SOX 79d nopys-ou-ndino Inopis asn spuewrtrod ndinQ
I-‘p-‘q- 100I-3S0Y-- 100I-3S0Y-- JuoN JuoN 79d suondo-£K1onb-wud suondo puewwod £1anQ)
pauueg SOX SOX SR SR 19d spuewwos-pauueq sadoqtt
pauueg S9x SOX SOX. SOX 19d spuewwoo-pauueq qITop
pauueg SOX SOX SOX SOx. 19d spuewwoo-pauueq Twayop
pauueqg pauueg SOX SOX SOX 19d spuewmoo-pauueq TTe3sure
pauueg pauueg pauueg pouueg SOX 19d spuewos-pauueq pasop
pauueg pauueg pouueg pouueg SR 19d spuewIod-pauueq pIeyop
L 9 S 4 €TT0
SIAVA UAIRJY ERLLER |

92

APPENDIX D. FEATURE AVAILABILITY BY EAPI

SOx
SOx
SOx
SOX
SOX
SOx
SOx
SOX
SOK
SOX
SOx
SOx

SOx
S9x
SOx
SOX
SOX
SOx
S9x
SOx
ON
SOX
SOx
SOx

SR
ON
ON

SOX
ON
ON

SR
ON
ON
ON

SR

SOX.

SOX
ON
ON

SOX.
ON
ON

SOX
ON
ON
ON
ON

SOX

ON
ON

ON
ON

ON
ON
ON
ON
ON

6.d aa19said-ownw
9.d 1pqr[-1o8

9,d soop[reisure

G, d ounj-ynejop

G/ d aseo-a1ougi-yoedun
G/ d suorsuayxa-yoedun
G, d suorsuayxa-yoedun
G, d anjosqe-yoedun

¢, d spuewIuroo-IaA

¢, d asnr-ur

7L,d xasn

7Ld yum-osn

paAasaid sownw o1
ITPqII 288
SOOPTTRISUTS
uonouny 3Tneyep
QANISUASUI-9sED yoedun
zx1 J0J 11oddns yoedun
zx 10J J1oddns yoedun
syred 9njosqe yoedun
SPUBTIUIOD %~ IDA
osnI~uIl

Xosn

Sre piy) Aidwo yatm~esn

SIAVH

€TT0

DUIYIY

aanyedq

Appendix E

Differences Between EAPIs

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.

EAPI 0

EAPI 0 is the base EAPL

EAPI 1

EAPI 1 is EAPI 0 with the following changes:

e IUSE defaults, IUSE-DEFAULTS on page 31.
e Slot dependencies, SLOT-DEPS on page 38.
e Different src_compile implementation, SRC-COMPILE-1 on page 44.

EAPI 2

EAPI 2 is EAPI 1 with the following changes:

Use dependencies, USE-DEPS on page 37.

! and !! blockers, BANG-STRENGTH on page 38.

SRC_URI arrows, SRC-URI-ARROWS on page 40.

src_prepare, SRC-PREPARE on page 42.

src_configure, SRC-CONFIGURE on page 43.

Different src_compile implementation, SRC-COMPILE-2 on page 44.

default_ phase functions for phases pkg_nofetch, src_unpack, src_prepare, src_
configure, src_compile and src_test; DEFAULT-PHASE-FUNCS on page 47.

doman language detection by filename, DOMAN-LANGS on page 68.

e default function, DEFAULT-FUNC on page 75.

EAPI3

EAPI 3 is EAPI 2 with the following changes:

e Offset-prefix support by definition of EPREFIX, ED and EROOT, OFFSET-PREFIX-VARS on
page 58.

e unpack supports .xz and .tar.xz, UNPACK-EXTENSIONS on page 75.

o File modification times are preserved, MTIME-PRESERVE on page 79.

93

APPENDIX E. DIFFERENCES BETWEEN EAPIS 94

EAPI 4

EAPI 4 is EAPI 3 with the following changes:

PROPERTIES support is mandatory, PROPERTIES on page 31.

REQUIRED_USE, REQUIRED-USE on page 31.

RDEPEND=DEPEND no longer done, RDEPEND-DEPEND on page 32.
DEFINED_PHASES support is mandatory, DEFINED-PHASES on page 33.

Use dependency defaults, USE-DEP-DEFAULTS on page 39.

S to WORKDIR fallback restricted, S-WORKDIR-FALLBACK on page 41.
pkg_pretend, PKG-PRETEND on page 41.

Default src_install no longer a no-op, SRC-INSTALL-4 on page 45.

pkg_info can run on non-installed packages, PKG-INFO on page 46.

AA is gone, AA on page 52.

KV is gone, KV on page 55.

MERGE_TYPE, MERGE-TYPE on page 55.

REPLACING_VERSIONS and REPLACED_BY_VERSION, REPLACE-VERSION-VARS on page 57.
Utilities now die on failure, DIE-ON-FAILURE on page 61, unless called under nonfatal,
NONFATAL on page 61

dohard, dosed banned, BANNED-COMMANDS on page 61.

econf adds --disable-dependency-tracking, ECONF-OPTIONS on page 65.
dodoc -r support, DODOC on page 67.

doins supports symlinks, DOINS on page 68.

doman -1i18n option takes precedence, DOMAN-LANGS on page 68.

Controllable compression and docompress, DOCOMPRESS on page 71.

use_with and use_enable support empty third argument, USE-WITH on page 72.

EAPI S

EAPI 5 is EAPI 4 with the following changes:

Stable use masking and forcing, STABLEMASK on page 25.
REQUIRED_USE now supports 77 groups, AT-MOST-ONE-OF on page 35.
Slot operator dependencies, SLOT-OPERATOR-DEPS on page 38.

SLOT now supports an optional sub-slot part, SUB-SLOT on page 38.
src_test supports parallel tests, PARALLEL-TESTS on page 44.
EBUILD_PHASE_FUNC, EBUILD-PHASE-FUNC on page 55.

USE is calculated differently, PROFILE-TUSE-INJECT on page 57.

find is guaranteed to be GNU, GNU-FIND on page 60.

best_version and has_version support the --host-root option, PM-QUERY-OPTIONS
on page 62.

econf adds --disable-silent-rules, ECONF-OPTIONS on page 65.
doheader and newheader support, DOHEADER on page 67.

new* can read from standard input, NEWFOO-STDIN on page 69.

usex support, USEX on page 72.

EAPI 6

EAPI 6 is EAPI 5 with the following changes:

Bash version is 4.2, BASH-VERSION on page 29.

failglob is enabled in global scope, FAILGLOB on page 29.

Default src_prepare no longer a no-op, SRC-PREPARE-6 on page 43.

Different src_install implementation, SRC-INSTALL-6 on page 45.

LC_CTYPE and LC_COLLATE compatible with POSIX locale, LOCALE-SETTINGS on page 56.
einstall banned, BANNED-COMMANDS on page 61.

APPENDIX E. DIFFERENCES BETWEEN EAPIS 95

die and assert called with -n respect nonfatal, NONFATAL-DIE on page 63.

eapply support, EAPPLY on page 63.

eapply_user support, EAPPLY-USER on page 63.

econf adds --docdir and --htmldir, ECONF-OPTIONS on page 65.

in_jiuse support, IN-IUSE on page 73.

unpack supports absolute and relative paths, UNPACK-ABSOLUTE on page 75.

unpack supports .txz, UNPACK-EXTENSIONS on page 75.

unpack matches filename extensions case-insensitively, UNPACK-IGNORE-CASE on page 75.
einstalldocs support, EINSTALLDOCS on page 76.

get_libdir support, GET-LIBDIR on page 76.

EAPIL7

EAPI 7 is EAPI 6 with the following changes:

e profiles/package.mask can be a directory, PACKAGE-MASK-DIR on page 19.
e package.mask, package.use, use.* and package.use.* in a profile can be directories,

PROFILE-FILE-DIRS on page 24.

e package.provided in profiles banned, PACKAGE-PROVIDED on page 25.

Empty | | and ~~ dependency groups no longer count as being matched, EMPTY-DEP-GROUPS
on page 36.

PORTDIR is gone, PORTDIR on page 53.

ECLASSDIR is gone, ECLASSDIR on page 53.

DESTTREE is gone, DESTTREE on page 54.

INSDESTTREE is gone, INSDESTTREE on page 54.

ROOT, ERQOOT, D, ED no longer end with a trailing slash, TRAILING-SLASH on page 58.
SYSROOT and ESYSROOT, SYSROOT on page 53.

econf adds --with-sysroot, ECONF-OPTIONS on page 65.

BDEPEND, BDEPEND on page 34.

BROOT, BROOT on page 53.

best_version and has_version support -b, -d and -r options instead of --host-root,
PM-QUERY-OPTIONS on page 62.

ENV_UNSET, ENV-UNSET on page 56.

patch is compatible with GNU patch 2.7, GNU-PATCH on page 60.

nonfatal is both a shell function and an external command, NONFATAL on page 61.
dohtml banned, BANNED-COMMANDS on page 61.

dolib and 1ibopts banned, BANNED-COMMANDS on page 61.

Output commands no longer use stdout, OUTPUT-NO-STDOUT on page 62.

eqawarn, EQAWARN on page 63.

die is guaranteed to work in a subshell, SUBSHELL-DIE on page 63.

domo installs to /usr, DOMO-PATH on page 68.

Controllable stripping and dostrip, DOSTRIP on page 72.

Version manipulation and comparison commands, VER-COMMANDS on page 73.

APPENDIX E. DIFFERENCES BETWEEN EAPIS

96

/0°€/eS-Aq/s98UB0I|/B10°SUOWILIODBAINESID//: AN,
uoneoy0ads Iebeue | obeyoed:109[0ld/im/B10°00jusB HIM//SARY |

ay1 | ‘}ingas aq 0} sabexoed juspuadep aiinbai Aew 10|s
-qns uaJayip e yum abexoed e Jo uoision mau e 0} apeld
-dn ue yoiym u1 sased juasaidal 0} pasn S 10|s-qns ay |
"0€ *z/Z 9|dwexa Joj ‘18)0eIRYD / B AQ palwiep ‘10[S
JenBas 8yl smoj|o} eyl led 10js-gns [euondo ue uiejuod
Aew sajouspuadap 10[S pue s|qellen LO'IS 8yl Slojs-qns

sabueyg/suomppy

(02-60-2102) S IdV3

"S|dV3 shoinaid 8say] usamleq SeouaIaYIp IO}
1UBWINDOP SIY] JO 0°G UOISIOA 885 "80dS JO Y%OB| 40} paliwQ

¥ pue ‘g ‘2 ‘L ‘0 sidv3

Z90UsdIT 0°¢ MY dJeys-uonnquny
SUOWIWOD BAIlBaID By} Japun pasesjal S| YIom Syl
"MOIAIONO SIY}
SB 1N0X08YD dWes ay} WoJj 1jing ‘4asi Juswnoop SN ayl
0} Jajal sjaqe ||V “1dv3 sholnaid syl se awes auy) si |dy3
ue ‘pajou asimIaylo alaym 1deoxg (1 ‘g ‘I ‘o) sieba)
-ul paJaquinu A|9AIINOBSUOD 8JB S|dyJ 00IUSY) [BIOILO
‘Aluo Arewwns a}gdwodul
ue si sy} | ‘ebed j0efoid sy} uo puno} uonedyads sebe
-uep abexoed 8yl JNSU09 ‘s|ielap ||} Jo4 “sioyine pjings
10} ‘oojuan) Ul sabueyd |dy3 Ulew 8y} JO MBIAIBAO Uy

108015qY

8102 |udy yi0g
0’/ UoIsSIap

Bi0 00usb@WIN
BN YduIN

Bio-00usb@Ine}
Jawweyneq uensuyo

198yS 1eayD IdVv4

*19 ebed uo SONYIWNOD-AINNY4E 895 ‘Juswade|dal se
pasn aq P|NOYS SPUBWIWOD OS*qTTOP J0 B qTTOpP
oyoads ay| ‘pamoje Jobuo] oN s3zdoqTT pue qTTOP

"19 abed uo SONVYIWNOD-AINNV4 995 ‘Juswade|dal
B SB pasn aq Ued I— SUTOP "pamoje Jabuoj oN TwIyop

"G obed uo 33411S3ASNI pue G abed uo 33H11S3A
998G 'peadlsul SPUBWIWOD OJUTSUT pue OJUT a8yl asM
‘aiow Aue peaulep 0N AFILLSHASNI pue ITILLSHA

‘66 abed uo HIaSSY103 pue £G abed UO HIALHOd 89S
‘Alousodal ay} ul sojI} SS829€ AJ10841p 10U PINOYS SP|INGd
asneosq ‘pauljep Jebuo| ON JIASSYIOE pue ¥IdLdod

"Gz ebed uo @3aINOYd-3DVMOVd 983 "paddoip Ajjeuly
pue awi Buo| e aouls pejedsaideq popTaocad: abesoed

sueg/s|eAoway

‘e, obed U0 SANVNWOO-HIA 885

'ST-J0 AT ‘©b-
‘16— ‘su- ‘bo- aq ued do *dAJ 0] SYNejep LA "oni}
Sl gA do (A uonelal ayl ji oy ga do [pa] 3se3 asa

"Ad 0} S}nejep uoisian “pamoje ase siied jdas
abues sidnnyy jdes Buuis Ag ebues ul siojeredss
uoision |le aoejday [uorsian] " - jdas abues sx~ x9A

"*Ad 0} synejep uoisian "ebues Aq paljoads
Buisgns uoision ay) Julld [uorsian] abues ano™ x9a

spuewwod uosuedwod pue uonendiuew uoISIaA

"2/ 9Bed uo di41s0a 88S ", dTI1S ,=IDITYISHT YUM
uey} [0J3U0D pauleib-aul} 210w Moje 0] ‘sjoquiAs Bngap
Jo Buidduis 1oy 1s1] uoisnjoxa ue 0} syjed ppe 0} pasn aq
ued puewwod x— drx3sop syl Buiddiys ajqejjosuon

‘g9 obed uo H1vd-OWOQ 998G "©TeD0T /2IeyS
/{ATIIISHAA} S JO pedIsul ©TeD0T /aaeYs /ISn/
Japun sa|ij paljioads ay) S|[elsul OuoP UOlleUl}Sap owop

"£9 9bed uo 31a-173IHSENS 993 "IXSJUOD ||BYSqgNS B Ul
»J0M 0} pasjuesenb S| pUBLIWOD STP 8y [|IdYsgns ul TP

‘©9 abed uo NHYMYD3 993 “Jjas) Jebeuew abexoed ay
ul palioddns si puewwod indino uxzemebo ay| uxzemebs

"29 abed uo LNOALS-ON-LNd1NO 838 ybneod aq
1,UOM INdiNo J18Y] UONNYISONS PUBLULLOD JO SpPISUl 0S ‘IN0
-pis @sn Jobuo| ou spusll) pue 0JUTS SpuewWWOd Indino

*19 abed uo TVLVANON 985 "SPUBLIWOD JBYI0 WO}
pajled &g UBD JI ‘SNY| "PUBLIWOD [BUJIBIXS UB SB UOle)}
-uswa|dwi yoeqe} e mou sey Jaddeim Teiejuou ayl
‘uollouny |dys B Se UolIUIeP SH 0} UOHIPPE U] Te3lejuou

‘09 9bed uo HO1vd-NND 893 "saydjed
panew.o-1ub 10j Lioddns sepnjoul siy} ‘Ajjeroadsg paliod
-dns aJe 7'z uoisian yored NND Jo} piea sindul |y yo3ed

"9G abed uo L3ISNN-ANT 983 “J1obeuew abexoed sy} Aq
losun eq [|IM B|0BLBA THSNN~ ANH paulep-ajioid ay)
Ul PalsI] 9|gelBA JUBWUOIIAUS AUy ISIPOBI] JUSWUOIIAUT

"29 abed uo SNOILJO-AHIND-Nd 985
‘uondo 300x-3s0y—— 9y} saoejdas siy] -(yneyep
oY) ANEJHEAY 10 ANHJHJ ‘aNEd=adg o} Aidde o}
fienb ay) Buisneo ‘suondo x1- 1o p- ‘gq- loddns
sJed|ay 888l | UOTSIDA 3SOC PUR UOTSIDA™ SeY

"G9 abed U0 SNOILJO-4INOO3T 883
‘pauoddns si uondo syl ji ‘einbiyuod o} passed si
{ILOOY¥SASH} $=300a5As-y3TM—— uodpQ Fuood

"6G ebed uo 1004dg 993
's|00} p|ing ajgeinoaxe A|[ealdA} ‘saiouspuadep adA
aN=Zdaagd 4o} yred Aio1oauip 1004 paxyald ay] Loodd

"90UBIUBAUOD 0} ‘syled X T AAIdH
pue LOOYSXS 8yl JO UOlBUSIBOUOD 8Y| LOOYSASH

"©G obed U0 LOOHSAS 995 "solouspuadap adA}
aN=d=a 4o A1030811p 1004 8y} 0} yied 8yl LOOYSAS

"¢ obed uo aN3d3ag 995 (1 SOHD) ying Bureq wa}
-sAs ay1 yum ajgnedwod sarouspuadap 1o} aNIdAd
{(aTINgD) S|00} P|ING 8AIBU IO} ANHJIAJY :S9SSE|d
OM] OlJUl papIAlp aJe salouspuadep pling ANZdAALD

:11oddns uoneidwod ss010 Janaq
JO} PapuUBIXe USa(Q SABY SPUBLULIOD SWOS pUE pappe
usaq aney ss|qelien [eianes 1doddns uonejidwod ssol)

sub-slot is not specified in SLOT, it defaults to the regu-
lar slot. See SUB-SLOT on page 38.

Slot operator dependencies Package dependencies can
specify one of the following operators as a suffix, which
will affect updates of runtime dependencies:

:* Any slot value is acceptable. The package will not
break when its dependency is updated.

:= Any slot value is acceptable, but the package can
break when its dependency is updated to a different
slot (or sub-slot).

See SLOT-OPERATOR-DEPS on page 38.

Profile IUSE injection Apart from the USE flags explicitly
listed in TUSE, additional flags can be implicitly provided
by profiles. See PROFILE-IUSE-INJECT on page 57.

At-most-one-of groups In REQUIRED_USE you can use
"?? (flagl flag2 ...)"to allow zero or one
USE flag out of many. See AT-MOST-ONE-OF on page 35.

Parallel tests The default for src_test runs emake
without —j1 now. See PARALLEL-TESTS on page 44.

econf changes The econf function now always passes
—-—disable-silent-rulesto configure. See
ECONF-OPTIONS on page 65.

has_version and best_version changes The two
helpers support a ——host-root option that causes
the query to apply to the host root instead of ROOT.
See PM-QUERY-OPTIONS on page 62.

usex Usage for this helper function is usex <USE flag>
[true] [false1] [true2] [false2]. If the USE flag is set, out-
puts [truel][true2] (defaults to yes), otherwise outputs
[false1][false2] (defaults to no). See USEX on page 72.

doheader and newheader These new helper functions
install the given header file(s) into /usr/include.
The —r option enables recursion for doheader, sim-
ilar to doins. See DOHEADER on page 67.

newx standard input The newins etc. commands read
from standard input if the first argument is — (a hyphen).
See NEWFOO-STDIN on page 69.

EBUILD_PHASE_FUNC This variable is very similar to
EBUILD_PHASE, but contains the name of the current
ebuild function. See EBUILD-PHASE-FUNC on page 55.

Stable use masking/forcing New files use.stable.
{mask, force} and package.use.stable.
{mask, force} are supported in profile directories.
They are similar to their non-stable counterparts, but
act only on packages that would be merged due to a
stable keyword. See STABLEMASK on page 25.

EAPI 6 (2015-11-13)

Additions/Changes

Bash version Ebuilds can use features of Bash version 4.2
(was 3.2 before). See BASH-VERSION on page 29.

failglob The failglob option of Bash is setin global
scope, so that unintentional pattern expansion will be
caught as an error. See FAILGLOB on page 29.

Locale settings It is ensured that the behaviour of case
modification and collation order for ASCIl characters
(LC_CTYPE and LC_COLLATE) are the same as in the
POSIX locale. See LOCALE-SETTINGS on page 56.

src_prepare This phase function has a default now,
which applies patches from the PATCHES variable with
the new eapply command, and user-provided patches
with eapply_user. See SRC-PREPARE-6 on page 43.

src_install The default implementation uses the new
einstalldocs function for installing documentation.
See SRC-INSTALL-6 on page 45.

nonfatal die Whendie or assert are called under
the nonfatal command and with the —n option, they
will not abort the build process but return with an error.
See NONFATAL-DIE on page 63.

unpack changes unpack has been extended:

Pathnames Both absolute paths and paths relative to
the working directory are accepted as arguments.
See UNPACK-ABSOLUTE on page 75.

.txz files Suffix .txz for xz compressed tarballs is
recognised. See UNPACK-EXTENSIONS on page 75.

Filename case Character case of filename extensions
is ignored. See UNPACK-IGNORE-CASE on page 75.

econf changes Options ——docdir and ——htmldir
are passed to configure, in addition to the existing
options. See ECONF-OPTIONS on page 65.

eapply The eapply command is a simplified substitute
for epatch, implemented in the package manager. The
patches from its file or directory arguments are applied
using patch -pl. See EAPPLY on page 63.

eapply user The eapply_user command permits
the package manager to apply user-provided patches.
It must be called from every src_prepare function.
See EAPPLY-USER on page 63.

einstalldocs The einstalldocs function will in-
stall the files specified by the DOCS variable (or a default
set of files if DOCS is unset) and by the HTML_DOCS
variable. See EINSTALLDOCS on page 76.

in _iuse The in_iuse function returns true if the USE
flag given as its argument is available in the ebuild for
USE queries. See IN-IUSE on page 73.

get_libdir The get_libdir command outputs the
1ib= directory basename suitable for the current ABI.
See GET-LIBDIR on page 76.

Removals/Bans

einstall No longer allowed. Use emake install
as replacement. See BANNED-COMMANDS on page 61.

EAPI 7 (2018-04-30)

Additions/Changes

package. * and use . x These profile files can be direc-
tories instead of regular files. This is intended to be used
in overlays only. See PACKAGE-MASK-DIR on page 19
and PROFILE-FILE-DIRS on page 24.

| | and ~* dependency groups These groups now eval-
uate to false when they are empty (for example, if there
are only unmatched use dependencies inside of them).
See EMPTY-DEP-GROUPS on page 36.

No trailing slash The paths specified by ROOT, EROOT,
D, and ED no longer end with a slash. Thus, default
ROOT is empty now. See TRAILING-SLASH on page 58.

	Introduction
	Aims and Motivation
	Rationale
	Reporting Issues
	Conventions
	Acknowledgements

	EAPIs
	Definition
	Defined EAPIs
	Reserved EAPIs

	Names and Versions
	Restrictions upon Names
	Category names
	Package names
	Slot names
	USE flag names
	Repository names
	License names
	Keyword names
	EAPI names

	Version Specifications
	Version Comparison
	Uniqueness of Versions

	Tree Layout
	Top Level
	Category Directories
	Package Directories
	The Profiles Directory
	The profiles.desc file
	The thirdpartymirrors file
	use.desc and related files
	The updates directory

	The Licenses Directory
	The Eclass Directory
	The Metadata Directory
	The metadata cache

	Profiles
	General Principles
	Files That Make up a Profile
	The parent file
	The eapi file
	deprecated
	make.defaults
	Simple line-based files
	packages
	packages.build
	package.mask
	package.provided
	package.use
	USE masking and forcing

	Profile Variables
	Incremental variables
	Specific variables and their meanings

	Ebuild File Format
	Ebuild-defined Variables
	Metadata Invariance
	Mandatory Ebuild-defined Variables
	Optional Ebuild-defined Variables
	EAPI
	Keywords
	RDEPEND value

	Magic Ebuild-defined Variables

	Dependencies
	Dependency Classes
	Dependency Specification Format
	All-of dependency specifications
	USE-conditional dependency specifications
	Any-of dependency specifications
	Exactly-one-of dependency specifications
	At-most-one-of dependency specifications
	Package dependency specifications
	Operators
	Block operator
	Slot dependencies
	2-style and 4-style USE dependencies

	USE state constraints
	Restrict
	Properties
	SRC_URI

	Ebuild-defined Functions
	List of Functions
	Initial working directories
	pkg_pretend
	pkg_setup
	src_unpack
	src_prepare
	src_configure
	src_compile
	src_test
	src_install
	pkg_preinst
	pkg_postinst
	pkg_prerm
	pkg_postrm
	pkg_config
	pkg_info
	pkg_nofetch
	Default phase functions

	Call Order

	Eclasses
	The inherit Command
	Eclass-defined Metadata Keys
	EXPORT_FUNCTIONS

	The Ebuild Environment
	Defined Variables
	USE and IUSE handling
	REPLACING_VERSIONS and REPLACED_BY_VERSION
	Offset-prefix variables
	Path variables and trailing slash

	The State of Variables Between Functions
	The State of the System Between Functions

	Available Commands
	System Commands
	Guaranteed system commands

	Commands Provided by Package Dependencies
	Ebuild-specific Commands
	Failure behaviour and related commands
	Banned commands
	Sandbox commands
	Package manager query commands
	Output commands
	Error commands
	Patch commands
	Build commands
	Installation commands
	Commands affecting install destinations
	Commands controlling manipulation of files in the staging area
	USE list functions
	Text list functions
	Version manipulation and comparison commands
	Misc commands
	Debug commands
	Reserved commands and variables

	Merging and Unmerging
	Overview
	Directories
	Permissions
	Empty directories

	Regular Files
	Permissions
	File modification times
	Configuration file protection

	Symlinks
	Rewriting

	Hard Links
	Other Files

	Metadata Cache
	Directory Contents
	Cache File Format

	Glossary
	Bibliography
	metadata.xml
	Unspecified Items
	Historical Curiosities
	Long-obsolete Features
	If-else USE blocks
	CVS versions
	use.defaults

	Retroactive Changes
	Bash version
	Old-style virtuals
	EAPI parsing
	Package names
	Asterisk in dependency specification
	Empty dependency groups

	Feature Availability by EAPI
	Differences Between EAPIs
	EAPI 0
	EAPI 1
	EAPI 2
	EAPI 3
	EAPI 4
	EAPI 5
	EAPI 6
	EAPI 7

	Desk Reference

