EAPI Cheat Sheet

Gentoo PMS team*

Version 5.0
20th September 2012

Abstract

An overview of the main EAPI changes in Gentoo, for
ebuild authors. For full details, consult the Package Man-
ager Specification found on the project page; this is an
incomplete summary only.

Official Gentoo EAPIs are consecutively numbered in-
tegers (0, 1, 2, ...). Except where otherwise noted, an
EAPI is the same as the previous EAPI. All labels refer to
the PMS document itself, built from the same checkout as
this overview.

This document is released under the Creative Com-

mons Attribution-Share Alike 3.0 Licence'.

EAPI O

If there is no EAPI explicitly specified, EAPI 0 is assumed.

EAPI 1

Additions/Changes

IUSE defaults A USE flag can be marked as mandatory
(if not disabled explicitly by user configuration) with a +
sign in front. See IUSE-DEFAULTS on page 28.

Named slot dependencies Dependencies can explicitly
request a specific slot by using the dev-1ibs/foo:
SLOT_name syntax. See SLOT-DEPS on page 35.

*http://www.gentoo.org/proj/en/qa/pms.xml
Thttp://creativecommons.org/licenses/by-sa/3.0/

http://www.gentoo.org/proj/en/qa/pms.xml
http://creativecommons.org/licenses/by-sa/3.0/

EAPI 2 (2008-09-25)

Additions/Changes

SRC_URI arrows Allows redirection of upstream file nam-
ing scheme. By using SRC_URI="http://some/
url —-> foo" the file is saved as foo in DISTDIR.
See SRC-URI-ARROWS on page 37.

USE dependencies Dependencies can specify USE flag
requirements on their target, removing the need for
built_with_use checks.

[opt] The flag must be enabled.

[opt=] The flag must be enabled if it is enabled for the
package with the dependency, or disabled other-
wise.

[lopt=] The flag must be disabled if it is enabled for the
package with the dependency, or enabled otherwise.

[opt?] The flag must be enabled if it is enabled for the
package with the dependency.

[lopt?] The flag must be disabled if it is disabled for the
package with the dependency.

[-opt] The flag must be disabled.
See USE-DEPS on page 34.

Blocker syntax A single exclamation mark as a blocker
may be ignored by the package manager as long as the
stated package is uninstalled later on. Two exclamation
marks are a strong blocker and will always be respected.
See BANG-STRENGTH on page 35.

src_configure, src_prepare Both new phases
provide finer granularity in the ebuild’s structure. Con-
figure calls should be moved from src_compile
to src_configure. Patching and similar prepa-
ration must now be done in src_prepare, not
src_unpack. See SRC-PREPARE on page 40 and
SRC-CONFIGURE on page 40.

Default phase functions The default functions for phases
pkg_nofetch, src_unpack, src_prepare,
src_configure, src_compile and src_test
can be called via default_phasename, so duplicat-
ing the standard implementation is no longer necessary
for small additions. The short-hand default function

calls the current phase’s default_ function auto-
matically, so any small additions you need will not be
accompanied by a complete reimplementation of the
phase. See DEFAULT-PHASE-FUNCS on page 44 and
DEFAULT-FUNC on page 69.

doman language support The doman installation func-
tion recognizes language specific man page extensions
and behaves accordingly. This behaviour can be inhib-
ited by the —118n switch with EAPI 4. See DOMAN-
LANGS on page 63.

EAPI 3 (2010-01-18)

Additions/Changes

Support for .xz Unpack of .xz and .tar.xz files is
possible without any custom src_unpack functions.
See UNPACK-EXTENSIONS on page 68.

Offset prefix Supporting installation on Prefix-enabled
systems will be easier with this EAPI.

EAPI 4 (2011-01-17)

Additions/Changes

pPkg_pretend Some useful checks (kernel options for
example) can be placed in this new phase to inform
the user early (when just pretending to emerge the
package). Most checks should usually be repeated in
pkg_setup. See PKG-PRETEND on page 38.

src_install The src_install phase is no longer
empty but has a default now. This comes along with an
accompanying default function. See SRC-INSTALL-4
on page 41.

pkg_info on non-installed packages The pkg_info
phase can be called even for non-installed packages.
Be warned that dependencies might not have been in-
stalled at execution time. See PKG-INFO on page 43.

econf changes The helper function now always acti-
vates ——disable-dependency-tracking. See
ECONF-OPTIONS on page 60.

USE dependency defaults In addition to the features of-
fered in EAPI 2 for USE dependencies, a (+) or (-)
can be added after a USE flag (mind the parentheses).
The former specifies that flags not in IUSE should be
treated as enabled; the latter, disabled. Cannot be used
with USE_EXPAND flags. This mimics parts of the be-
haviour of ——missing in built_with_use. See
USE-DEP-DEFAULTS on page 36.

Controllable compression All items in the doc, info,
man subdirectories of /usr/share/ may be com-
pressed on-disk after src_install, except for
/usr/share/doc/${PF}/html. docompress
path ... adds paths to the inclusion list for com-
pression. docompress -x path ... adds paths
to the exclusion list. See DOCOMPRESS on page 66.

dodoc recursion If the —r switch is given as first argu-
ment and followed by directories, files from there are in-
stalled recursively. See DODOC on page 62.

doins symlink support Symbolic links are now properly
installed when using recursion (—r switch). See DOINS
on page 63.

nonfatal for commands If you call nonfatal the
command given as argument will not abort the build pro-
cess in case of a failure (as is the default) but will return
non-zero on failure. See NONFATAL on page 58.

PROPERTIES Is mandatory for all package managers now
to support interactive installs.

REQUIRED_USE This variable can be used similar to the
(R|P)DEPEND variables and define sets of USE flag
combinations that are not allowed. All elements can be
further nested to achieve more functionality.

Forbidden combination To prevent activation of
flagl if flag2 is enabled use "flag2? (

'flagl)"

OR If at least one USE flag out of many must
be activated on flagl use "flagl? (|| (
flag2 flag3 ...))"

XOR To allow exactly one USE flag out of many use
"“~~(flagl flag2 ...)"

See REQUIRED-USE on page 28.

MERGE_TYPE This variable contains one of three possible
values to allow checks if it is normal merge with compi-
lation and installation (source), installation of a binary
package (binary), or a compilation without installation
(buildonly). See MERGE-TYPE on page 53.

REPLACING_VERSIONS, REPLACED_BY_ VERSION
These variables, valid in pkg_*, contain a list of all
versions (PVR) of this package that we are replacing,
and the version that is replacing the current one,
respectively. See REPLACE-VERSION-VARS on page 55.

Removals/Bans

dohard, dosed Both functions are not allowed any more.
See BANNED-COMMANDS on page 58.

No RDEPEND fall-back The package manager will not fall
back to RDEPEND=DEPEND if RDEPEND is undefined.
See RDEPEND-DEPEND on page 29.

S fallback changes The value of the variable S will not au-
tomatically be changed to WORKDIR, if S is not a direc-
tory, but abort. Virtual packages are the only exception.
See S-WORKDIR-FALLBACK on page 38.

AA, KV These variables are not defined any more. See AA
on page 49 and KV on page 53.

EAPI 5 (2012-09-20)

Additions/Changes

Sub-slots The SLOT variable and slot dependencies may
contain an optional sub-slot part that follows the regular
slot, delimited by a / character; for example 2/2.30.
The sub-slot is used to represent cases in which an up-
grade to a new version of a package with a different sub-
slot may require dependent packages to be rebuilt. If the
sub-slot is not specified in SLOT, it defaults to the regu-
lar slot. See SUB-SLOT on page 35.

Slot operator dependencies One of the following opera-
tors can be specified after package atoms, which will
affect updates of runtime dependencies:

1% Any slot value is acceptable. The package will not
break when its dependency is updated.

:= Any slot value is acceptable, but the package can
break when its dependency is updated to a different
slot (or sub-slot).

See SLOT-OPERATOR-DEPS on page 35.

Profile IUSE injection Apart from the USE flags explicitly
listed in TUSE, additional flags can be implicitly provided
by profiles. See PROFILE-IUSE-INJECT on page 55.

At-most-one-of groups In REQUIRED_USE you can use
"2 (flagl flag2 ...)" to allow zero or
one USE flag out of many. See AT-MOST-ONE-OF on
page 32.

Parallel tests The default for src_test runs emake
without —j1 now. See PARALLEL-TESTS on page 41.

econf changes The econf function now always passes
——disable-silent-rulesto configure. See
ECONF-OPTIONS on page 60.

has_version and best_version changes The two
helpers support a ——host-root option that causes
the query to apply to the host root instead of ROOT.
See HOST-ROOT-OPTION on page 59.

usex Usage for this helper function is usex <USE flag>
[truel] [false1] [true2] [false2]. If the USE flag is set, out-
puts [truel][true2] (defaults to yes), otherwise outputs
[false1][false2] (defaults to no). See USEX on page 67.

doheader and newheader These new helper functions
install the given header file(s) into /usr/include.
The —r option enables recursion for doheader, sim-
ilar to doins. See DOHEADER on page 62.

newx standard input The newins etc. commands read
from standard input if the first argument is — (a hyphen).
See NEWFOO-STDIN on page 64.

EBUILD_PHASE_FUNC This variable is very similar to
EBUILD_PHASE, but contains the name of the current
ebuild function. See EBUILD-PHASE-FUNC on page 52.

Stable use masking/forcing New files use.stable.
{mask, force} and package.use.stable.
{mask, force} are supported in profile directories.
They are similar to their non-stalbb1le counterparts, but
act only on packages that would be merged due to a
stable keyword. See STABLEMASK on page 22.

	EAPI 0
	EAPI 1
	Additions/Changes

	EAPI 2 (2008-09-25)
	Additions/Changes

	EAPI 3 (2010-01-18)
	Additions/Changes

	EAPI 4 (2011-01-17)
	Additions/Changes
	Removals/Bans

	EAPI 5 (2012-09-20)
	Additions/Changes

