
1

Table of Contents
EAPI Usage and Description .. 1

Usage of EAPIs .. 1
EAPI=1 ... 1
EAPI=2 ... 2
EAPI=3 ... 4
EAPI=4 ... 4
EAPI=5 ... 8

EAPI Usage and Description
The Package Manager Specification (PMS) is a standardization effort to ensure that the ebuild file format,
the ebuild repository format (of which the portage tree is Gentoo's main incarnation) as well as behavior
of the package managers interacting with these ebuilds is properly written down and agreed upon.

EAPI is a version defined in ebuilds and other package manager related files which inform the package
manager about the file syntax and content. It is, in effect, the version of the package manager specification
(PMS) that the file adheres to.

This section provides usage and descriptions of the different EAPIs.

Usage of EAPIs
An overview about the important features of each EAPI is provided in the appendix of the Package Manager
Specification. The two-page leaflet can be printed out, consulted for reference and is available as app-
doc/pms in the main tree.

If EAPI is undefined in an ebuild, then EAPI=0 is selected. You should set the EAPI variable, by specifying
it at the top of the ebuild:

Note

Most developers prefer to set the EAPI version without quotes. However, the PMS allows single
and double quotes as well.

Copyright 1999-2015 Gentoo Foundation # Distributed under the terms of the GNU General Public
License v2 # Id EAPI=5 inherit eutils EAPI must only be defined in ebuild files, not eclasses. (eclasses
may have EAPI-conditional code)

When writing new ebuilds developers can choose whathever EAPI they think is the best. Using the features
of the latest EAPI is encouraged.

EAPI=1
• Default src_compile Phase Function

Support for the ECONF_SOURCE variable, which is also supported by econf, has been added to the
default src_compile implementation.
src_compile() { if [[-x ${ECONF_SOURCE:-.}/configure]] ; then econf fi if [-f Makefile] || [-f
GNUmakefile] || [-f makefile] ; then emake || die "emake failed" fi }

• SLOT dependencies

2

Any valid atom can be constrained to match a specific SLOT. This is accomplished by appending a
colon to the atom, followed by a SLOT value.

SLOT dependency examples:

• x11-libs/qt:3

• ~x11-libs/qt-3.3.8:3

• >=x11-libs/qt-3.3.8:3

• =x11-libs/qt-3.3*:3

• IUSE defaults

Add + or - before the name of the use flag in IUSE to turn it on or off by default.
The default USE-ordering is USE_ORDER="env:pkg:conf:defaults:pkginternal:env.d" (see man
make.conf) Disabling default IUSE is pretty much useless as it does not override the profile and user
config (make.conf and package.use) # Copyright 1999-2015 Gentoo Foundation # Distributed under the
terms of the GNU General Public License v2 # Id EAPI=1 IUSE="foo +bar"

EAPI=2

Helpers

• doman Language Support

doman automatically detects language codes and puts it in the appropriate directory. doman foo.1 #
will go into /usr/share/man/man1/foo.1 doman foo.lang.1 # will go into /usr/share/man/lang/man1/foo.1
with EAPI=2

Metadata

• Blocker Atoms

• New Meaning for Old Syntax

Blocker atoms which use the previously existing !atom syntax now have a slightly different meaning.
These blocker atoms indicate that conflicting packages may be temporarily installed simultaneously.
When temporary simultaneous installation of conflicting packages occurs, the installation of a newer
package may overwrite any colliding files that belong to an older package which is explicitly blocked.
When such file collisions occur, the colliding files cease to belong to the older package, and they
remain installed after the older package is eventually uninstalled. The older package is uninstalled
only after any newer blocking packages have been merged on top of it.

• New !!atom Syntax

A new !!atom syntax is now supported, for use in special cases for which temporary simultaneous
installation of conflicting packages should not be allowed. If a given package happens to be blocked
by a mixture of atoms consisting of both the !atom and !!atom syntaxes, the !!atom syntax takes
precedence over the !atom syntax.

• USE Dependencies

It is possible to depend on USE-flags of packages.

3

Examples:

• foo[bar] means that package foo must have USE-flag bar enabled

• foo[bar,baz] means that the package foo must have both the bar and baz USE-flags enabled

• foo[-bar,baz] means that the package foo must have the bar USE-flag disabled and baz USE-flag
enabled

• foo[bar?] means bar? (foo[bar]) !bar? (foo)

• foo[!bar?] means bar? (foo) !bar? (foo[-bar])

• foo[bar=] means bar? (foo[bar]) !bar? (foo[-bar])

• foo[!bar=] means bar? (foo[-bar]) !bar? (foo[bar])

• Customization of Output File Names in SRC_URI

A new syntax is supported which allows customization of the output file name for a given URI. In order
to customize the output file name, a given URI should be followed by a "->" operator which, in turn,
should be followed by the desired output file name. As usual, all tokens, including the operator and
output file name, should be separated by whitespace.

Example:
SRC_URI="http://dl.google.com/earth/client/GE4/release_4_3/GoogleEarthLinux.bin ->
GoogleEarthLinux-${PV}.bin"

Phases

• New src_prepare Phase Function

A new src_prepare function is called after the src_unpack function, with cwd initially set to $S.

• New src_configure Phase Function

The configure portion of the src_compile function has been split into a separate function which is named
src_configure. The src_configure function is called in-between the src_prepare and src_compile
functions.

The default src_configure and src_compile functions in EAPI=2: src_configure() { if [[-x
${ECONF_SOURCE:-.}/configure]] ; then econf fi } src_compile() { if [-f Makefile] || [-f
GNUmakefile] || [-f makefile] ; then emake || die "emake failed" fi }

• Execution Order of Phase Functions

• pkg_setup

• src_unpack

• src_prepare

• src_configure

• src_compile

• src_test

4

• src_install

• pkg_preinst

• pkg_postinst

• pkg_prerm

• pkg_postrm

• Default Phase Functions

The default pkg_nofetch and src_* phase functions are now accessible via a function having a name that
begins with default_ and ends with the respective phase function name. For example, a call to a function
with the name default_src_compile is equivalent to a call to the default src_compile implementation.

The default phase functions are:

• default_pkg_nofetch

• default_src_unpack

• default_src_prepare

• default_src_configure

• default_src_compile

• default_src_test

• Default Phase Function Alias

A function named "default" is redefined for each phase so that it will call the default_* function
corresponding to the current phase. For example, a call to the function named "default" during the
src_compile phase is equivalent to a call to the function named default_src_compile.

EAPI=3
• Gentoo Prefix support

Support for the EPREFIX, EROOT, and ED variables. If an ebuild uses one of these, it must
be EAPI3 aware. See Gentoo Prefix Techdocs [https://www.gentoo.org/proj/en/gentoo-alt/prefix/
techdocs.xml#doc_chap2] for more information.

• unpack supports .xz and .tar.xz

The unpack command supports xz-archives and xz-compressed tar files.

EAPI=4
Helpers

• utilities die on their own, unless the nonfatal command is used

Ebuild functions all die on their own in EAPI=4. In case that this non-zero exit status is expected, you
may call nonfatal function [arg,...].

https://www.gentoo.org/proj/en/gentoo-alt/prefix/techdocs.xml#doc_chap2
https://www.gentoo.org/proj/en/gentoo-alt/prefix/techdocs.xml#doc_chap2
https://www.gentoo.org/proj/en/gentoo-alt/prefix/techdocs.xml#doc_chap2

5

Example:
EAPI=1 ... src_install() { emake DESTDIR="${D}" install || die "make install failed" dodoc ChangeLog
README } EAPI=4 ... src_install() { emake DESTDIR="${D}" install nonfatal dodoc ChangeLog
README }

• recursive dodoc

dodoc supports -r as the first argument, which leads dodoc to install the specified documentation
directory recursively into the docdir.

Example:
src_install() { default dodoc ChangeLog dodoc -r doc/ }

• doins symlink supports

Within EAPI=4, doins supports installing symlinks as symlinks when installing recursively. For older
EAPIs, the symlink behaviour is undefined.

• dosed and dohard are banned

The dosed and dohard commands are banned in this EAPI.

• econf adds --disable-dependency-tracking

Within EAPI=4, econf adds --disable-dependency-tracking to the default configure options.

• controllable compression via docompress

To compress files in the destination-folder ${D}, the docompress command may be used in src_install.
To control which items should be compressed and which shouldn't be compressed, you may include or
exclude directories or plain files. The default inclusion list contains:

• /usr/share/doc

• /usr/share/info

• /usr/share/man
The default exclusion list contains:

• /usr/share/doc/${PF}/html
When a directory is in- or excluded, all files and directories in the given directories shall be added to the
corresponding list. If a file is in- or excluded, the file shall be added to the corresponding list (exclusion
is stronger than inclusion if a file is in both lists, the inclusion will be ignored).

If the first argument of docompress is -x, the items specified will be added to the exclusion list, otherwise
they will be added to the inclusion list.

Note

When docompress is called, it is not required that the paths specified as its arguments are
pointing to existing files or directories. However, if a file still doesn't exist when src_install
has completed, it will be ignored with a warning.

Metadata

• use dependencies default

6

In addition to the use-deps specified in EAPI=2, a (+) or (-) may be added to the use-dep to define a
default-value in case the use-flag does not exist in the given package. The (+) means that this use-flag
is assumed to be enabled, (-) the opposite.

Example:
DEPEND=" >=dev-libs/boost-1.32[boost(+)] sys-devel/gcc[openmp(-)]"

Phases

• new pkg_pretend phase

The new pkg_pretend phase can be used to do sanity checks before the main phase function sequence
is run (meaning this phase is executed after the package manager has calculated the dependencies and
before installing them). This phase typically checks for a kernel configuration and may eerror and
die when needed. There is no guarantee that the ebuild's dependencies are installed when this phase is
called. As pkg_pretend is not called in the main phase function sequence, environment saving is not
guaranteed.

Example:
Copyright 1999-2015 Gentoo Foundation # Distributed under the terms of the GNU
General Public License v2 # Id EAPI=4 inherit linux-info ... CONFIG_CHECK="FUSE_FS"
ERROR_FUSE_FS="this is an unrealistic testcase..." pkg_pretend() { if use kernel_linux ; then if [[-e
"${ROOT}"/usr/src/linux/.config]] ; then if kernel_is lt 2 6 30 ; then check_extra_config fi fi fi }

• default src_install is no longer a no-op

The default src_install function in EAPI=4:
src_install() { if [[-f Makefile]] || [[-f GNUmakefile]] || [[-f makefile]] ; then emake DESTDIR="${D}"
install fi if ! declare -p DOCS >/dev/null 2>&1 ; then local d for d in README* ChangeLog AUTHORS
NEWS TODO CHANGES THANKS BUGS \ FAQ CREDITS CHANGELOG ; do [[-s "${d}"]] &&
dodoc "${d}" done elif declare -p DOCS | grep -q "^declare -a " ; then dodoc "${DOCS[@]}" else
dodoc ${DOCS} fi }

• pkg_info for non-installed packages

The pkg_info function may also be called by the package manager for non-installed packages. Ebuild
writers should note that dependencies may not be available.

Variables

• REQUIRED_USE

The REQUIRED_USE variable contains a list of assertions that must be met by the configuration of
USE flags to be valid for this ebuild. In order to be matched, a USE flag in a terminal element must be
enabled (or disabled if it has an exclamation mark prefix).

Essentially, REQUIRED_USE is an analogue of DEPEND style syntax. For example, to state that
some combination is forbidden, i.e. "if foo is set, bar must be unset":
REQUIRED_USE="foo? (!bar)"

To state "if foo is set, then at least one of bar, baz, and quux must be activated":
REQUIRED_USE="foo? (|| (bar baz quux))"

To state "exactly one of foo, bar, or baz must be set, but not several":
REQUIRED_USE="^^ (foo bar baz)"

7

Note that the last relationship is that of an Exclusive OR (XOR). While an XOR could be formed from
usual DEPEND syntax, a specific ^^ operator has been added for this case.

Finally, to state "at least one of foo, bar, or baz must be set":
REQUIRED_USE="|| (foo bar baz)" See section ::general-concepts/use-flags/#conflicting-use-flags
for when (and when not) to use REQUIRED_USE.

• REPLACING_VERSIONS and REPLACED_BY_VERSION

The REPLACING_VERSIONS variable contains a whitespace-separated list of all versions (PVR)
of this package that are being replaced (uninstalled or overwritten) as a result of this install. It is a list,
not a single optional value, to handle pathological cases such as installing foo-2:2 to replace foo-2:1
and foo-3:2.

REPLACING_VERSIONS is valid in pkg_preinst and pkg_postinst. In addition, it may be available
in pkg_pretend and pkg_setup, although you should take care to handle binary package creation and
installation correctly when using it in these phases.

The REPLACED_BY_VERSION variable contains the single version (PVR) of this package that is
replacing us, if we are being uninstalled as part of an install, or an empty string otherwise. It is valid
in pkg_prerm and pkg_postrm.

• MERGE_TYPE

The MERGE_TYPE variable contains the type of package that is being merged. Possible values are:

• source -

if building and installing a package from source,

• binary -

if installing a binary package,

• buildonly -

if building a binary package without installing it.

• DOCS

The DOCS variable is an array or whitespace-separated list of documentation files for the default
src_install function to install using dodoc. If undefined, a reasonable default list is used. See the default
src_install function above.

• AA and KV variables are gone

The AA and KV variables are no longer set in EAPI=4.

• no more RDEPEND="${DEPEND}"

When RDEPEND is unset, there will no longer be an automatic assignment of
RDEPEND="${DEPEND}".

::general-concepts/use-flags/#conflicting-use-flags

8

EAPI=5

Metadata

• REQUIRED_USE supports new at-most-one-of operator

The new at-most-one-of operator consists of the string '??', and is satisfied if zero or one (but no more)
of its child elements is matched.

• SLOT supports optional "sub-slot" part

The SLOT variable may contain an optional sub-slot part that follows the regular slot and is delimited
by a / character. The sub-slot must be a valid slot name. The sub-slot is used to represent cases in which
an upgrade to a new version of a package with a different sub-slot may require dependent packages to
be rebuilt. When the sub-slot part is omitted from the SLOT definition, the package is considered to
have an implicit sub-slot which is equal to the regular slot.

• Slot operators and sub-slots in dependencies

A slot dependency may contain an optional sub-slot part that follows the regular slot and is delimited
by a / character. This can be useful for packages installing pre-built binaries that require a library with
a specific soname version which corresponds to the sub-slot. For example:
RDEPEND="dev-libs/foo:0/3"

Dependency atoms can use slot operators to clarify what should happen if the slot and/or sub-slot of
a runtime dependency changes:

• :* Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that the
package specifying the dependency will not break if the package matching the dependency is replaced
by a different matching package with a different slot and/or sub-slot.

• := Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package specifying the dependency will break unless there is available a package matching the
dependency and whose slot and sub-slot are equal to the slot and sub-slot of the best installed version
that had matched this dependency at the time when the package specifying this dependency had been
installed.

• :slot= Indicates that only a specific slot value is acceptable, and otherwise behaves identically to the
:= operator.

Note

use :slot/subslot without a = to depend on a specific slot and sub-slot pair; it's a syntax error
to use :slot/subslot= in an ebuild.

The :slot dependency syntax continues to behave like in EAPI=4 or earlier, i.e. it indicates that only the
specific slot value is acceptable, but the package will not break when the version matching the runtime
dependency is replaced by a version with a different sub-slot.

For example:
RDEPEND="dev-libs/foo:2= >=dev-libs/bar-0.9:= media-gfx/baz:* x11-misc/wombat:0"

means that the package should be rebuilt when foo:2 or >=bar-0.9 are upgraded to versions with
different subslots, but that changes in subslots of baz or wombat:0 should be ignored.

9

Profiles

• Profile stable USE forcing and masking

In profile directories with an EAPI supporting stable masking, new USE configuration
files are supported: use.stable.mask, use.stable.force, package.use.stable.mask and
package.use.stable.force. These files behave similarly to previously supported USE configuration files,
except that they only influence packages that are merged due to a stable keyword.

Helpers

• econf adds --disable-silent-rules

This option will automatically be passed if --disable-silent-rules occurs in the output of configure --
help.

• new* commands can read from standard input

Standard input is read when the first parameter is - (a hyphen).

• New option --host-root for {has,best}_version

This option --host-root will cause the query to apply to the host root instead of ROOT.

• New doheader helper function

Installs the given header files into /usr/include/. If option -r is specified, descends recursively into any
directories given.

• New usex helper function

Example 1.

USAGE: usex #USE flag# [true output] [false output] [true suffix] [false suffix]
DESCRIPTION:
If USE flag is set, echo [true output][true suffix] (defaults to "yes"),
 otherwise echo [false output][false suffix] (defaults to "no").

Phases

• src_test supports parallel tests

Unlike older EAPIs, the default src_test implementation will not pass the -j1 option to emake.

Variables

• EBUILD_PHASE_FUNC

During execution of an ebuild phase function (such as pkg_setup or src_unpack), the
EBUILD_PHASE_FUNC variable will contain the name of the phase function that is currently
executing.

